• 제목/요약/키워드: neural-like cells

검색결과 68건 처리시간 0.03초

The Presence of Neural Stem Cells and Changes in Stem Cell-Like Activity With Age in Mouse Spiral Ganglion Cells In Vivo and In Vitro

  • Moon, Byoung-San;Ammothumkandy, Aswathy;Zhang, Naibo;Peng, Lei;Ibrayeva, Albina;Bay, Maxwell;Pratap, Athira;Park, Hong Ju;Bonaguidi, Michael Anthony;Lu, Wange
    • Clinical and Experimental Otorhinolaryngology
    • /
    • 제11권4호
    • /
    • pp.224-232
    • /
    • 2018
  • Objectives. Spiral ganglion neurons (SGNs) include potential endogenous progenitor populations for the regeneration of the peripheral auditory system. However, whether these populations are present in adult mice is largely unknown. We examined the presence and characteristics of SGN-neural stem cells (NSCs) in mice as a function of age. Methods. The expression of Nestin and Ki67 was examined in sequentially dissected cochlear modiolar tissues from mice of different ages (from postnatal day to 24 weeks) and the sphere-forming populations from the SGNs were isolated and differentiated into different cell types. Results. There were significant decreases in Nestin and Ki67 double-positive mitotic progenitor cells in vivo with increasing mouse age. The SGNs formed spheres exhibiting self-renewing activity and multipotent capacity, which were seen in NSCs and were capable of differentiating into neuron and glial cell types. The SGN spheres derived from mice at an early age (postnatal day or 2 weeks) contained more mitotic stem cells than those from mice at a late age. Conclusion. Our findings showed the presence of self-renewing and proliferative subtypes of SGN-NSCs which might serve as a promising source for the regeneration of auditory neurons even in adult mice.

Alpha-Synuclein Inclusion Formation in Human Oligodendrocytes

  • Yoon, Ye-Seul;Ahn, Woo Jung;Ricarte, Diadem;Ortiz, Darlene;Shin, Chan Young;Lee, Seung-Jae;Lee, He-Jin
    • Biomolecules & Therapeutics
    • /
    • 제29권1호
    • /
    • pp.83-89
    • /
    • 2021
  • Multiple system atrophy (MSA) is a neurodegenerative disease characterized by presence of α-synuclein-positive inclusions in the cytoplasm of oligodendrocytes. These glial cytoplasmic inclusions (GCIs) are considered an integral part of the pathogenesis of MSA, leading to demyelination and neuronal demise. What is most puzzling in the research fields of GCIs is the origin of α-synuclein aggregates in GCIs, since adult oligodendrocytes do not express high levels of α-synuclein. The most recent leading hypothesis is that GCIs form via transfer and accumulation of α-synuclein from neurons to oligodendrocytes. However, studies regarding this subject are limited due to the absence of proper human cell models, to demonstrate the entry and accumulation of neuronal α-synuclein in human oligodendrocytes. Here, we generated mature human oligodendrocytes that can take up neuronderived α-synuclein and form GCI-like inclusions. Mature human oligodendrocytes are derived from neural stem cells via "oligosphere" formation and then into oligodendrocytes, treating the cells with the proper differentiation factors at each step. In the final cell preparations, oligodendrocytes consist of the majority population, while some astrocytes and unidentified stem cell-like cells were present as well. When these cells were exposed to α-synuclein proteins secreted from neuron-like human neuroblastoma cells, oligodendrocytes developed perinuclear inclusion bodies with α-synuclein immunoreactivity, resembling GCIs, while the stem cell-like cells showed α-synuclein-positive, scattered puncta in the cytoplasm. In conclusion, we have established a human oligodendrocyte model for the study of GCI formation, and the characterization and use of this model might pave the way for understanding the pathogenesis of MSA.

시험관내 배양된 제대혈 모세포에서의 신경항원 발현 (Neural Antigen Expressions in Cultured Human Umbilical Cord Blood Stem Cells in vitro)

  • 하윤;윤도흠;연동수;김현옥;이진주;조용은;최중언
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권8호
    • /
    • pp.963-969
    • /
    • 2001
  • Objectives : Cord blood stem cells have been widely used as donor cells for bone marrow transplantation recently. These cells can give rise to a variety of hematopoietic lineages to repopulate the blood. Recent observations reveal that some bone marrow cells and bone marrow stromal cells(MSCs) can grow to become either neurons or glial cells. It is, however, unclear whether or not there exists stems cells which can differentiate into neurons in the blood during the early stages of postnatal life. Methods : Human cord blood stem cells were prepared from human placenta after full term delivery. To induce neuronal differentiation of stem cells, ${\beta}$-mercaptoethanol was treated. To confirm the neuro-glial characteristics of differentiated stem cells, immunocytochemical stain for NeuN, neurofilament, glial fibrillary acidic protein(GFAP), microtubule associated protein2(MAP2) was performed. RT-PCR was performed for detecting nestin mRNA and MAP2 mRNA. Results : We showed in this experiment that neuro-glial markers(NeuN, neurofilament, MAP2, GFAP) were expressed and axon-like cytoplasmic processes are elaborated in the cultured human cord blood stem cells prepared from new born placenta after full term delivery. Nestin mRNA was also detected in fresh cord blood monocytes. Conclusions : These results suggest that human cord blood derived stem cells may be potential sources of neurons in early postnatal life.

  • PDF

쥐의 뇌실 하 영역(SVZ) 신경 줄기 세포의 신경 세포로의 분화 과정에서 Nox4의 역할 (Role of Nox4 in Neuronal Differentiation of Mouse Subventricular Zone Neural Stem Cells)

  • 박기엽;나예린;김만수
    • 생명과학회지
    • /
    • 제26권1호
    • /
    • pp.8-16
    • /
    • 2016
  • 적절한 농도의 활성산소종(ROS)은 병원체에 대한 세포의 방어, 신호 전달, 세포 성장 및 유전자 발현을 포함한 다양한 정상 세포 기능을 매개한다. 최근의 연구는 ROS와 ROS를 생성하는 NADPH 산화 효소(Nox)가 성인 쥐 뇌의 뇌실 하 영역(SVZ)에 있는 신경 줄기세포의 자가 복제와 신경 세포 분화에 중요하다는 것을 보여 주었다. 본 연구에서 세포 내 ROS가 갓 태어난 쥐의 뇌에서 적출되어 배양된 SVZ 신경 줄기세포에서 검출된 것으로 나타났다. Nox 유사 유전자들 중 Nox4가 배양된 세포에서 주로 발현되었고, Nox1과 Nox2는 거의 발현되지 않았다. 또한, Nox4 유전자는 신경 세포 분화 동안 최대 10배까지 발현이 크게 증가하였다. Immunocytochemistry결과 Nox4 단백질은 신경 세포 특이적인 tubulin인 Tuj1-양성 신경 세포에서 주로 발견되었다. 이와 맥을 같이 하여, 내인성 ROS는 분화 후 축삭돌기를 가지고 있으며 신경 세포로 보이는 세포에서만 검출되었다. 또한, ROS를 제거하는N-acetyl cysteine에 의해 세포 산화 환원 상태가 교란되었을 때, 신경 세포로의 분화가 크게 감소하였다. 마지막으로, shRNA를 이용하 여 Nox4를 knockdown한 세포에서 신경 세포로의 분화가 감소하였다. 이러한 연구 결과는 Nox4가 갓 태어난 쥐의 SVZ 신경 줄기 세포의 주요한 ROS 생성 효소이고, Nox4에 의한 ROS생성이 신경 세포 분화에 중요하다는 것을 암시한다.

Alkylglyceronephosphate Synthase (AGPS) Alters Lipid Signaling Pathways and Supports Chemotherapy Resistance of Glioma and Hepatic Carcinoma Cell Lines

  • Zhu, Yu;Liu, Xing-Jun;Yang, Ping;Zhao, Meng;Lv, Li-Xia;Zhang, Guo-Dong;Wang, Qin;Zhang, Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.3219-3226
    • /
    • 2014
  • Chemotherapy continues to be a mainstay of cancer treatment, although drug resistance is a major obstacle. Lipid metabolism plays a critical role in cancer pathology, with elevated ether lipid levels. Recently, alkylglyceronephosphate synthase (AGPS), an enzyme that catalyzes the critical step in ether lipid synthesis, was shown to be up-regulated in multiple types of cancer cells and primary tumors. Here, we demonstrated that silencing of AGPS in chemotherapy resistance glioma U87MG/DDP and hepatic carcinoma HepG2/ADM cell lines resulted in reduced cell proliferation, increased drug sensitivity, cell cycle arrest and cell apoptosis through reducing the intracellular concentration of lysophosphatidic acid (LPA), lysophosphatidic acid-ether (LPAe) and prostaglandin E2 (PGE2), resulting in reduction of LPA receptor and EP receptors mediated PI3K/AKT signaling pathways and the expression of several multi-drug resistance genes, like MDR1, MRP1 and ABCG2. ${\beta}$-catenin, caspase-3/8, Bcl-2 and survivin were also found to be involved. In summary, our studies indicate that AGPS plays a role in cancer chemotherapy resistance by mediating signaling lipid metabolism in cancer cells.

The origin-of-cell harboring cancer-driving mutations in human glioblastoma

  • Lee, Joo Ho;Lee, Jeong Ho
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.481-483
    • /
    • 2018
  • Glioblastoma (GBM) is the most common and aggressive form of human adult brain malignancy. The identification of the cell of origin harboring cancer-driver mutations is the fundamental issue for understanding the nature of GBM and developing the effective therapeutic target. It has been a long-term hypothesis that neural stem cells in the subventricular zone (SVZ) might be the origin-of-cells in human glioblastoma since they are known to have life-long proliferative activity and acquire somatic mutations. However, the cell of origin for GBM remains controversial due to lack of direct evidence thereof in human GBM. Our recent study using various sequencing techniques in triple matched samples such as tumor-free SVZ, tumor, and normal tissues from human patients identified the clonal relationship of driver mutations between GBM and tumor-free SVZ harboring neural stem cells (NSCs). Tumor-free SVZ tissue away from the tumor contained low-level GBM driver mutations (as low as 1% allelic frequency) that were found in the dominant clones in its matching tumors. Moreover, via single-cell sequencing and microdissection, it was discovered that astrocyte-like NSCs accumulating driver mutations evolved into GBM with clonal expansion. Furthermore, mutagenesis of cancer-driving genes of NSCs in mice leads to migration of mutant cells from SVZ to distant brain and development of high-grade glioma through the aberrant growth of oligodendrocyte precursor lineage. Altogether, the present study provides the first direct evidence that NSCs in human SVZ is the cell of origin that develops the driver mutations of GBM.

Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice

  • Seong, Kyung-Joo;Lee, Hyun-Gwan;Kook, Min Suk;Ko, Hyun-Mi;Jung, Ji-Yeon;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.41-51
    • /
    • 2016
  • Adult hippocampal dentate granule neurons are generated from neural stem cells (NSCs) in the mammalian brain, and the fate specification of adult NSCs is precisely controlled by the local niches and environment, such as the subventricular zone (SVZ), dentate gyrus (DG), and Toll-like receptors (TLRs). Epigallocatechin-3-gallate (EGCG) is the main polyphenolic flavonoid in green tea that has neuroprotective activities, but there is no clear understanding of the role of EGCG in adult neurogenesis in the DG after neuroinflammation. Here, we investigate the effect and the mechanism of EGCG on adult neurogenesis impaired by lipopolysaccharides (LPS). LPS-induced neuroinflammation inhibited adult neurogenesis by suppressing the proliferation and differentiation of neural stem cells in the DG, which was indicated by the decreased number of Bromodeoxyuridine (BrdU)-, Doublecortin (DCX)- and Neuronal Nuclei (NeuN)-positive cells. In addition, microglia were recruited with activating TLR4-NF-${\kappa}B$ signaling in the adult hippocampus by LPS injection. Treating LPS-injured mice with EGCG restored the proliferation and differentiation of NSCs in the DG, which were decreased by LPS, and EGCG treatment also ameliorated the apoptosis of NSCs. Moreover, pro-inflammatory cytokine production induced by LPS was attenuated by EGCG treatment through modulating the TLR4-NF-${\kappa}B$ pathway. These results illustrate that EGCG has a beneficial effect on impaired adult neurogenesis caused by LPS-induced neuroinflammation, and it may be applicable as a therapeutic agent against neurodegenerative disorders caused by inflammation.

Notch Is Not Involved in Physioxia-Mediated Stem Cell Maintenance in Midbrain Neural Stem Cells

  • Anne Herrmann;Anne K. Meyer;Lena Braunschweig;Lisa Wagenfuehr;Franz Markert;Deborah Kolitsch;Vladimir Vukicevic;Christiane Hartmann;Marlen Siebert;Monika Ehrhart-Bornstein;Andreas Hermann;Alexander Storch
    • International Journal of Stem Cells
    • /
    • 제16권3호
    • /
    • pp.293-303
    • /
    • 2023
  • Background and Objectives: The physiological oxygen tension in fetal brains (~3%, physioxia) is beneficial for the maintenance of neural stem cells (NSCs). Sensitivity to oxygen varies between NSCs from different fetal brain regions, with midbrain NSCs showing selective susceptibility. Data on Hif-1𝛼/Notch regulatory interactions as well as our observations that Hif-1𝛼 and oxygen affect midbrain NSCs survival and proliferation prompted our investigations on involvement of Notch signalling in physioxia-dependent midbrain NSCs performance. Methods and Results: Here we found that physioxia (3% O2) compared to normoxia (21% O2) increased proliferation, maintained stemness by suppression of spontaneous differentiation and supported cell cycle progression. Microarray and qRT-PCR analyses identified significant changes of Notch related genes in midbrain NSCs after long-term (13 days), but not after short-term physioxia (48 hours). Consistently, inhibition of Notch signalling with DAPT increased, but its stimulation with Dll4 decreased spontaneous differentiation into neurons solely under normoxic but not under physioxic conditions. Conclusions: Notch signalling does not influence the fate decision of midbrain NSCs cultured in vitro in physioxia, where other factors like Hif-1𝛼 might be involved. Our findings on how physioxia effects in midbrain NSCs are transduced by alternative signalling might, at least in part, explain their selective susceptibility to oxygen.

신경아교세포의 정상 기능과 정신장애에서 나타나는 신경아교세포 이상에 대한 고찰 (Neuroglial Cells : An Overview of Their Physiological Roles and Abnormalities in Mental Disorders)

  • 이경민
    • 생물정신의학
    • /
    • 제22권2호
    • /
    • pp.29-33
    • /
    • 2015
  • The brain maintains homeostasis and normal microenvironment through dynamic interactions of neurons and neuroglial cells to perform the proper information processing and normal cognitive functions. Recent post-mortem investigations and animal model studies demonstrated that the various brain areas such as cerebral cortex, hippocampus and amygdala have abnormalities in neuroglial numbers and functions in subjects with mental illnesses including schizophrenia, dementia and mood disorders like major depression and bipolar disorder. These findings highlight the putative role and involvement of neuroglial cells in mental disorders. Herein I discuss the physiological roles of neuroglial cells such as astrocytes, oligodendrocytes, and microglia in maintaining normal brain functions and their abnormalities in relation to mental disorders. Finally, all these findings could serve as a useful starting point for potential therapeutic concept and drug development to cure unnatural behaviors and abnormal cognitive functions observed in mental disorders.

미토콘드리아 저해제인 rotenone의 일시적 처리가 쥐의 뇌실 하 영역 신경 줄기 세포에 미치는 영향 (Effects of Transient Treatment with Rotenone, a Mitochondrial Inhibitor, on Mouse Subventricular Zone Neural Stem Cells)

  • 박기엽;김만수
    • 생명과학회지
    • /
    • 제29권12호
    • /
    • pp.1329-1336
    • /
    • 2019
  • 뇌에서 뇌실하 영역은 자가 복제 및 신경세포와 교세포로 분화하는 신경줄기세포가 위치한 곳이다. 이러한 신경줄기세포는 태어난 직후 뿐만 아니라, 성인기까지 존재한다. 세포 증식과 분화에 대한 결정은 세포 안과 밖의 상황에 따라 조절될 필요가 있기에, 많은 세포 내부 또는 세포 외부의 인자들이 이러한 결정에 관여한다. 이러한 인자들 중에서 미토콘드리아는 신경줄기세포의 운명 결정에 관여함이 보고된 바 있다. 본 저자들의 이전 논문에서, 미토콘드리아 저해제인 rotenone을 장시간 처리했을 때, 신경세포로의 분화가 거의 일어나지 않았음을 보여주었다. 이번 연구에서, rotenone을 뇌실하 영역 신경줄기세포에 단기간 처리했을 때의 영향에 대해 조사하였다. 이를 통해 다음과 같은 결과를 관찰하였다. (1) 하루 동안 rotenone을 처리하자 신경세포로의 분화가 크게 감소하였고, 특히 분화 초기 단계가 더 민감하게 억제되었다. (2) 일시적 증식세포인 Mash1+ 세포의 수가 rotenone을 하루 처리한 후 감소하였다. (3) 분화가 된 Tuj1+ 신경세포와 Olig2+ 희소 돌기 아교 세포 (oligodendrocytes) 모두 rotenone을 단기간 처리하자 감소하였다. 반면, glial fibrillary acidic protein (GFAP)+성상 세포 (astrocytes)의 수는 변화하지 않았다. (4) sulfiredoxin 1 (Srxn1) 유전자 발현이 rotenone을 하루 처리한 후 증가하였는데, 이는 nuclear factor (erythroid-derived 2)-like 2 (Nrf2) 신호전달 경로가 활성화 되었음을 말해준다. 이러한 실험 결과는 기능을 갖춘 미토콘드리아가 신경세포 또는 희소 돌기 아교 세포로의 분화 뿐 아니라, 이미 분화가 끝난 신경세포의 유지에도 필요함을 확인해 주었다. 또한, 이러한 결과는 rotenone과 같은 미토콘드리아의 저해제에 짧은 시간 노출 되더라도 신경줄기세포의 신경세포로의 분화 가능성에 장기적인 영향을 미칠 수 있음을 시사한다.