• Title/Summary/Keyword: neural stimulation

Search Result 152, Processing Time 0.023 seconds

A Review of the Cognitive Neuroscience of Creativity (창의성에 대한 인지신경과학 연구 개관)

  • Cho, Soohyun
    • Korean Journal of Cognitive Science
    • /
    • v.26 no.4
    • /
    • pp.393-433
    • /
    • 2015
  • Creativity refers to the ability to generate novel and useful ideas. Understanding the mechanism of creativity and its enhancement is important in order to solve major problems of the modern society and to improve the wellness of mankind. Creativity is a highly heterogeneous and complex ability which should not be conceptualized as a single entity. Thus, the current literature on creativity is based on a component process approach to creativity. The present study introduces cognitive neuroscience research studying the mechanism of divergent thinking, insight, relational thinking and artistic creativity which are the major components of creativity. Based on an expansive review, the early hypothesis of hemispheric asymmetry emphasizing the importance of the right as opposed to the left hemisphere is not supported by scientific evidence. In addition, there is no consensus or consistency on which specific brain region is related to a certain component of creativity. In fact, there is a mixture of studies reporting involvement of various brain regions across all four lobes of the brain. This inconsistency in the literature most likely reflects heterogeneity of the component processes of creativity and sensitivity of the neural response to differences across tasks and cognitive strategy. The present study introduces examples of representative studies reporting seminal findings on the neural basis and the enhancement of creativity based on innovative methodology. In addition, we discuss limitations of the current cognitive neuroscience approach to creativity and present directions for future research.

Changes of Regional Homogeneity and Amplitude of Low Frequency Fluctuation on Resting-State Induced by Acupuncture (침자극에 의한 안정성 네트워크 변화를 관찰하기 위한 Regional Homogeneity와 Amplitude of Low Frequency Fluctuation의 변화 비교: fMRI연구)

  • Yeo, Sujung
    • Korean Journal of Acupuncture
    • /
    • v.30 no.3
    • /
    • pp.161-170
    • /
    • 2013
  • Objectives : Our study aimed to investigate the sustained effects of sham (SHAM) and verum acupuncture (ACUP) into the post-stimulus resting state. Methods : In contrast to previous studies, in order to define the changes in resting state induced by acupuncture, changes were evaluated with a multi-method approach by using regional homogeneity (ReHo) and amplitude of low frequency fluctuation (ALFF). Twelve healthy participants received SHAM and ACUP stimulation right GB34 (Yanglingquan) and the neural changes between post- and pre-stimulation were detected. Results : The following results were found; in both ReHo and ALFF, the significant foci of; left and right middle frontal gyrus, left medial frontal gyrus, left superior frontal gyrus, and right posterior cingulate cortex, areas that are known as a default mode network, showed increased connectivity. In addition, in ReHo, but not in ALFF, brain activation changes in the insula, anterior cingulate cortex, and the thalamus, which are associated with acupuncture pain modulation, were found. Conclusions : In this study, results obtained by using ReHo and ALFF, showed that acupuncture can modulate the post-stimulus resting state and that ReHo, but not ALFF, can also detect the neural changes that were induced by the acupuncture stimulations. Although more future studies with ReHo and ALFF will be needed before any firm conclusions can be drawn, our study shows that particularly ReHo could be an interesting method for future clinical neuroimaging studies on acupuncture.

Analyses on the Performance of the CNN Reflecting the Cerebral Structure for Prediction of Cybersickness Occurrence (사이버멀미 발생 예측을 위한 대뇌 구조를 반영한 CNN 성능 분석)

  • Shin, Jeong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.238-244
    • /
    • 2019
  • In this study, we compared and analyzed the performance of each Convolution Neural Network (CNN) by implementing the CNN that reflected the characteristics of the cerebral structure, in order to analyze the CNN that was used for the prediction of cybersickness, and provided the performance varying depending on characteristics of the brain. Dizziness has many causes, but the most severe symptoms are considered attributable to vestibular dysfunction associated with the brain. Brain waves serve as indicators showing the state of brain activities, and tend to exhibit differences depending on external stimulation and cerebral activities. Changes in brain waves being caused by external stimuli and cerebral activities have been proved by many studies and experiments, including the thesis of Martijn E. Wokke, Tony Ro, published in 2019. Based on such correlation, we analyzed brain wave data collected from dizziness-inducing environments and implemented the dizziness predictive artificial neural network reflecting characteristics of the cerebral structure. The results of this study are expected to provide a basis for achieving optimal performance of the CNN used in the prediction of dizziness, and for predicting and preventing the occurrence of dizziness under various virtual reality (VR) environments.

Development of Intelligent System to Select Production Method in Coalbed Methane Reservoir (석탄층 메탄가스 저류층의 생산방법 선정을 위한 지능형 시스템 개발)

  • Kim, Chang-Jae;Kim, Jung-Gyun;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • To develop a coalbed methane(CBM) reservoir, it is important to apply production methods such as drilling, completion, and stimulation which coincide with coal properties. However, the reliability of the selected resulted in most of CBM field is not enough to accept because the selection of production method has been done by empirical decision. As the result, the empirical decision show inaccurate results and need to prove using simulation whether it was true exactly. In this study, the intelligent system has been developed to assist the selection of CBM production method using artificial neural network(ANN). Before the development of the system, technical screening guideline was analyzed by literature survey and the system to select drilling and completion method, and hydraulic fracture fluid was developed by utilizing the guideline. The result as a validation of the developed system showed a high accuracy. In conclusion, it has been confirmed that the developed system can be utilized as a effective tool to select production method in CBM reservoir.

New Model of Verifiation for Demonstration of Neuronal Basis of Acupuncture by Comparison of Two Different Methods of Acupuncture which Increase Regional Cerebral Blood Flow ( rCBF ) on SPECT (핵의학(SPECT)을 이용한 뇌혈류변화에 대한 침구효과 검증방법의 새로운 모델에 관한 연구)

  • Ahn, Soog-Gi;Kang, Hwa-Jeong;Song, Ho-Chun;Bom, Hee-Seung
    • Journal of Acupuncture Research
    • /
    • v.17 no.2
    • /
    • pp.247-259
    • /
    • 2000
  • Objective : The mechanism of acupuncture to increase cerebral blood flow is still uncertain. The purpose of this study was to evaluate the neural basis of acupuncture by comparing the cerebral regions activated by the stimulation of two different methods of acupunctures at the same acupoint which was suggested by oriental medicine to increase rCBF. Materials and Methods : Thirty-nine healthy volunteers(26 males, 13 females, age $31{\pm}11$ years) were studies by rest/acupuncture Tc-99m ECD brain SPECT using a subtraction method. SPECTs using two methods(needle retention and heated needle with 90% alcohol) at two acupoints (right LI. 4 and ST. 36) were peformed at an interval of three days. For the needle retention method, acupuncture needle was inserted to a depth of about 2 cm into each acupoint 8 minutes after the lst acquisition and continued to retain, and the second injection of Tc-99m ECD was done 15 minutes after the insertion of needle. For the heated acupuncture method, heated needle was inserted in a twinkle within several msec 20 second after the second injection of Tc-99m ECD. The differences of between rest and acupuncture activation state were statistically analyzed using a statistical parametric mapping software. Result : Acupunctures of both methods reveal similar patterns of increase in rCBF. Acupuncture at ST.36 increase rGBF in left anterior temporal, right inferior frontal lobes, and left cerebellum. Acupuncture at LI. 4 increase rCBF in the left frontal cortex, right temporal pole, both inferior frontal cortices and right cerebellum. Conclusion : The effects of two different acupunctures to the same acupoints on rCBF were similar. Therefore, this result suggests Chat the mechanism of acupuncture in the increase of cerebral blood flow have a neural basis.

  • PDF

Electroencephalogram-based emotional stress recognition according to audiovisual stimulation using spatial frequency convolutional gated transformer (공간 주파수 합성곱 게이트 트랜스포머를 이용한 시청각 자극에 따른 뇌전도 기반 감정적 스트레스 인식)

  • Kim, Hyoung-Gook;Jeong, Dong-Ki;Kim, Jin Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.518-524
    • /
    • 2022
  • In this paper, we propose a method for combining convolutional neural networks and attention mechanism to improve the recognition performance of emotional stress from Electroencephalogram (EGG) signals. In the proposed method, EEG signals are decomposed into five frequency domains, and spatial information of EEG features is obtained by applying a convolutional neural network layer to each frequency domain. As a next step, salient frequency information is learned in each frequency band using a gate transformer-based attention mechanism, and complementary frequency information is further learned through inter-frequency mapping to reflect it in the final attention representation. Through an EEG stress recognition experiment involving a DEAP dataset and six subjects, we show that the proposed method is effective in improving EEG-based stress recognition performance compared to the existing methods.

Research on development of electroencephalography Measurement and Processing system (뇌전도 측정 및 처리 시스템 개발에 관한 연구)

  • Doo-hyun Lee;Yu-jun Oh;Jin-hee Hong;Jun-su chae;Young-gyu Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 2024
  • In general, EEG signal analysis has been the subject of several studies due to its ability to provide an objective mode of recording brain stimulation, which is widely used in brain-computer interface research with applications in medical diagnosis and rehabilitation engineering. In this study, we developed EEG reception hardware to measure electroencephalograms and implemented a processing system, classifying it into server and data processing. It was conducted as an intermediate-stage research on the implementation of a brain-computer interface using electroencephalograms, and was implemented in the form of predicting the user's arm movements according to measured electroencephalogram data. Electroencephalogram measurements were performed using input from four electrodes through an analog-to-digital converter. After sending this to the server through a communication process, we designed and implemented a system flow in which the server classifies the electroencephalogram input using a convolutional neural network model and displays the results on the user terminal.

The Effectiveness of Mechanical Traction Therapy for Patients with Carpal Tunnel Syndrome (손목굴 증후군 환자를 위한 기계적 견인 치료의 효과)

  • Kyoung Sim Jung;Geum Sang Jeon;Sang Kun Sung;Bong Chun Noh;Tae Sung In
    • Journal of Korean Physical Therapy Science
    • /
    • v.31 no.3
    • /
    • pp.100-108
    • /
    • 2024
  • Background: This study was conducted to investigate the effects of mechanical traction therapy on pain, symptom severity, and functional status in patients with carpal tunnel syndrome. Design: Randomized controlled trial study. Methods: The 24 participants in this study were randomly assigned to either the Mechanical traction therapy (MTT) group (n=12) or the placebo group (n=12). Both groups performed tendon and neural gliding exercise. Both groups underwent mechanical traction therapy with their forearms placed on a traction device. However, in the placebo group, the device was turned off, and a placebo treatment was administered without any mechanical stimulation. All the participants underwent 18 sessions of intervention (10 minutes, 3 days per week for 6 weeks). Both groups were assessed for pain using the numerical pain rating scale and for symptom severity and functional status using the Boston Carpal Tunnel Syndrome Questionnaire (BCTQ), which includes two additional scales: the Boston Symptom Severity Scale (BSSS) and the Boston Functional Status Scale (BFSS). Results: The muscle activation, pain, symptom severity, and functional status in the MTT group were significantly improved compared to the placebo group (p<0.05). Conclusion: The results of this study indicate that traction therapy combined with tendon and neural gliding exercise. are a beneficial method for improving pain, symptom severity, and functional status in patients with carpal tunnel syndrome.

Characteristics of Trigeminal Evoked Potential and It's Pathway in the Rat (백서에서 삼차신경 유발전위의 특성과 경로 분석)

  • Kim, Se-Hyuk;Zhao, Chun-Zhi;Kwon, Oh-Kyoo;Lee, Bae-Hwan;Park, Yong-Gou;Chung, Sang-Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.985-994
    • /
    • 2000
  • Objective : There are some advantages of trigeminal evoked potential(TEP) recording compared to other somatosensory evoked potential(SSEP) recordings. The trigeminal sensory pathway has a pure sensory nerve branch, a broader receptive field in cerebral cortex, and a shorter pathway. Despite these advantages, there is little agreement as to what constitutes a normal response and what wave forms truly characterize the intraoperative TEP. This study presents the normative data of TEP recorded on the epidural surface of the rat with a platinum ball electrode. Materials & Methods : Under general anesthesia with urethane, the adult Sprague-Dawley male rats(300-350g) were given electrical stimulation with two stainless steel electrodes which were inserted into the subcutaneous layer of the area around whiskers. A reference electrode was positioned in the temporalis muscle ipsilateral to the recording site. Results : TEPs were recorded in the Par I area of somatosensory cortex and recorded most apparently on the point of 2mm posterior from the bregma and 6mm lateral from the midline. The typical wave form consisted of 5 peaks (N1-P1-N2-P2-N3 according to emerging order, upward negativity). Each latency to corresponding peaks was not influenced by the different intensities of stimulation, especially from 1 to 5mA. Average latencies of 5 peaks were in the following order ; 7.7, 11.1, 15, 22.3, 29.4ms. There was also no significant difference between latencies before and after administration of muscle relaxant(pancuronium). For the electrophysiological localization of recorded waves, the action potential of a single unit was recorded with glass microelectrode(filled with 2M NaCl, $3-5M{\Omega}$) in the thalamus of rat. A sharp wave was recorded in the VPM nucleus, in which the latency was shorter than that of N1. This suggests that all 5 peaks were generated by neural activities in the suprathalamic pathway. Conclusion : In terms of recording near-field potentials, our data also suggests that TEP in the rat may be superior to other SSEPs. In overall, these results may afford normative data for the studies of supratentorial lesions such as hydrocephalus or cerebral ischemia which can have an influence on near-field potentials.

  • PDF

Oroxylin A Induces BDNF Expression on Cortical Neurons through Adenosine A2A Receptor Stimulation: A Possible Role in Neuroprotection

  • Jeon, Se-Jin;Bak, Hae-Rang;Seo, Jung-Eun;Han, So-Min;Lee, Sung-Hoon;Han, Seol-Heui;Kwon, Kyoung-Ja;Ryu, Jong-Hoon;Cheong, Jae-Hoon;Ko, Kwang-Ho;Yang, Sung-Il;Choi, Ji-Woong;Park, Seung-Hwa;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • Oroxylin A is a flavone isolated from a medicinal herb reported to be effective in reducing the inflammatory and oxidative stresses. It also modulates the production of brain derived neurotrophic factor (BDNF) in cortical neurons by the transactivation of cAMP response element-binding protein (CREB). As a neurotrophin, BDNF plays roles in neuronal development, differentiation, synaptogenesis, and neural protection from the harmful stimuli. Adenosine $A2_A$ receptor colocalized with BDNF in brain and the functional interaction between $A2_A$ receptor stimulation and BDNF action has been suggested. In this study, we investigated the possibility that oroxylin A modulates BDNF production in cortical neuron through the regulation of $A2_A$ receptor system. As expected, CGS21680 ($A2_A$ receptor agonist) induced BDNF expression and release, however, an antagonist, ZM241385, prevented oroxylin A-induced increase in BDNF production. Oroxylin A activated the PI3K-Akt-GSK-$3{\beta}$ signaling pathway, which is inhibited by ZM241385 and the blockade of the signaling pathway abolished the increase in BDNF production. The physiological roles of oroxylin A-induced BDNF production were demonstrated by the increased neurite extension as well as synapse formation from neurons. Overall, oroxylin A might regulate BDNF production in cortical neuron through $A2_A$ receptor stimulation, which promotes cellular survival, synapse formation and neurite extension.