• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.044 seconds

Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image (딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로)

  • Choi, Seok-Keun;Lee, Soung-Ki;Kang, Yeon-Bin;Seong, Seon-Kyeong;Choi, Do-Yeon;Kim, Gwang-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for monitoring the agricultural environment. As a result of comparing classification performance by applying RF(Random Forest), SVM(Support Vector Machine) and CNN(Convolutional Neural Network), deep learning classification method has many advantages in image classification. In particular, land cover classification using satellite images has the advantage of accuracy and time of classification using satellite image data set and pre-trained parameters. However, UAV images have different characteristics such as satellite images and spatial resolution, which makes it difficult to apply them. In order to solve this problem, we conducted a study on the application of deep learning algorithms that can be used for analyzing agricultural lands where UAV data sets and small-scale composite cover exist in Korea. In this study, we applied DeepLab V3 +, FC-DenseNet (Fully Convolutional DenseNets) and FRRN-B (Full-Resolution Residual Networks), the semantic image classification of the state-of-art algorithm, to UAV data set. As a result, DeepLab V3 + and FC-DenseNet have an overall accuracy of 97% and a Kappa coefficient of 0.92, which is higher than the conventional classification. The applicability of the cover classification using UAV images of small areas is shown.

A Research about Time Domain Estimation Method for Greenhouse Environmental Factors based on Artificial Intelligence (인공지능 기반 온실 환경인자의 시간영역 추정)

  • Lee, JungKyu;Oh, JongWoo;Cho, YongJin;Lee, Donghoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.277-284
    • /
    • 2020
  • To increase the utilization of the intelligent methodology of smart farm management, estimation modeling techniques are required to assess prior examination of crops and environment changes in realtime. A mandatory environmental factor such as CO2 is challenging to establish a reliable estimation model in time domain accounted for indoor agricultural facilities where various correlated variables are highly coupled. Thus, this study was conducted to develop an artificial neural network for reducing time complexity by using environmental information distributed in adjacent areas from a time perspective as input and output variables as CO2. The environmental factors in the smart farm were continuously measured using measuring devices that integrated sensors through experiments. Modeling 1 predicted by the mean data of the experiment period and modeling 2 predicted by the day-to-day data were constructed to predict the correlation of CO2. Modeling 2 predicted by the previous day's data learning performed better than Modeling 1 predicted by the 60-day average value. Until 30 days, most of them showed a coefficient of determination between 0.70 and 0.88, and Model 2 was about 0.05 higher. However, after 30 days, the modeling coefficients of both models showed low values below 0.50. According to the modeling approach, comparing and analyzing the values of the determinants showed that data from adjacent time zones were relatively high performance at points requiring prediction rather than a fixed neural network model.

An adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning

  • Cao, Chenglong;Gan, Quan;Song, Jing;Yang, Qi;Hu, Liqin;Wang, Fang;Zhou, Tao
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2452-2459
    • /
    • 2020
  • Neutron spectrum is essential to the safe operation of reactors. Traditional online neutron spectrum measurement methods still have room to improve accuracy for the application cases of wide energy range. From the application of artificial neural network (ANN) algorithm in spectrum unfolding, its accuracy is difficult to be improved for lacking of enough effective training data. In this paper, an adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning was developed. The model of ANN was trained with thousands of neutron spectra generated with Monte Carlo transport calculation to construct a coarse-grained unfolded spectrum. In order to improve the accuracy of the unfolded spectrum, results of the previous ANN model combined with some specific eigenvalues of the current system were put into the dataset for training the deeper ANN model, and fine-grained unfolded spectrum could be achieved through the deeper ANN model. The method could realize accurate spectrum unfolding while maintaining universality, combined with detectors covering wide energy range, it could improve the accuracy of spectrum measurement methods for wide energy range. This method was verified with a fast neutron reactor BN-600. The mean square error (MSE), average relative deviation (ARD) and spectrum quality (Qs) were selected to evaluate the final results and they all demonstrated that the developed method was much more precise than traditional spectrum unfolding methods.

Real Time Environmental Classification Algorithm Using Neural Network for Hearing Aids (인공 신경망을 이용한 보청기용 실시간 환경분류 알고리즘)

  • Seo, Sangwan;Yook, Sunhyun;Nam, Kyoung Won;Han, Jonghee;Kwon, See Youn;Hong, Sung Hwa;Kim, Dongwook;Lee, Sangmin;Jang, Dong Pyo;Kim, In Young
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2013
  • Persons with sensorineural hearing impairment have troubles in hearing at noisy environments because of their deteriorated hearing levels and low-spectral resolution of the auditory system and therefore, they use hearing aids to compensate weakened hearing abilities. Various algorithms for hearing loss compensation and environmental noise reduction have been implemented in the hearing aid; however, the performance of these algorithms vary in accordance with external sound situations and therefore, it is important to tune the operation of the hearing aid appropriately in accordance with a wide variety of sound situations. In this study, a sound classification algorithm that can be applied to the hearing aid was suggested. The proposed algorithm can classify the different types of speech situations into four categories: 1) speech-only, 2) noise-only, 3) speech-in-noise, and 4) music-only. The proposed classification algorithm consists of two sub-parts: a feature extractor and a speech situation classifier. The former extracts seven characteristic features - short time energy and zero crossing rate in the time domain; spectral centroid, spectral flux and spectral roll-off in the frequency domain; mel frequency cepstral coefficients and power values of mel bands - from the recent input signals of two microphones, and the latter classifies the current speech situation. The experimental results showed that the proposed algorithm could classify the kinds of speech situations with an accuracy of over 94.4%. Based on these results, we believe that the proposed algorithm can be applied to the hearing aid to improve speech intelligibility in noisy environments.

Seismic Traveltime Tomography using Neural Network (신경망 이론을 이용한 탄성파 주시 토모그래피의 연구)

  • Kim, Tae-Yeon;Yoon, Wang-Jung
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.167-173
    • /
    • 1999
  • Since the resolution of the 2-D hole-to-hole seismic traveltime tomography is affected by the limited ray transmission angle, various methods were used to improve the resolution. Linear traveltime interpolation(LTI) ray tracing method was chosen for forward-modeling method. Inversion results using the LTI method were compared with those using the other ray tracing methods. As an inversion algorithm, SIRT method was used. In the iterative non-linear inversion method, the cost of ray tracing is quite expensive. To reduce the cost, each raypath was stored and the inversion was performed from this information. Using the proposed method, fast convergence was achieved. Inversion results are likely to be affected by the initial velocity guess, especially when the ray transmission angle was limited. To provide a good initial guess for the inversion, generalized regression neural network(GRNN) method was used. When the transmitted raypath angle is not limited or the geological model is very complex, the inversion results are not affected by initial velocity model very much. Since the raypath angles, however, are limited in most geophysical tomographic problems, the enhancement of resolution in tomography can be achieved by providing a proper initial velocity model by another inversion algorithm such as GRNN.

  • PDF

Development of Autonomous Vehicle Learning Data Generation System (자율주행 차량의 학습 데이터 자동 생성 시스템 개발)

  • Yoon, Seungje;Jung, Jiwon;Hong, June;Lim, Kyungil;Kim, Jaehwan;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.162-177
    • /
    • 2020
  • The perception of traffic environment based on various sensors in autonomous driving system has a direct relationship with driving safety. Recently, as the perception model based on deep neural network is used due to the development of machine learning/in-depth neural network technology, a the perception model training and high quality of a training dataset are required. However, there are several realistic difficulties to collect data on all situations that may occur in self-driving. The performance of the perception model may be deteriorated due to the difference between the overseas and domestic traffic environments, and data on bad weather where the sensors can not operate normally can not guarantee the qualitative part. Therefore, it is necessary to build a virtual road environment in the simulator rather than the actual road to collect the traning data. In this paper, a training dataset collection process is suggested by diversifying the weather, illumination, sensor position, type and counts of vehicles in the simulator environment that simulates the domestic road situation according to the domestic situation. In order to achieve better performance, the authors changed the domain of image to be closer to due diligence and diversified. And the performance evaluation was conducted on the test data collected in the actual road environment, and the performance was similar to that of the model learned only by the actual environmental data.

A Comparative Study of Image Classification Method to Detect Water Body Based on UAS (UAS 기반의 수체탐지를 위한 영상분류기법 비교연구)

  • LEE, Geun-Sang;KIM, Seok-Gu;CHOI, Yun-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.113-127
    • /
    • 2015
  • Recently, there has been a growing interest in UAS(Unmanned Aerial System), and it is required to develop techniques to effectively detect water body from the recorded images in order to implement flood monitoring using UAS. This study used a UAS with RGB and NIR+RG bands to achieve images, and applied supervised classification method to evaluate the accuracy of water body detection. Firstly, the result for accuracy in water body image classification by RGB images showed high Kappa coefficients of 0.791 and 0.783 for the artificial neural network and minimum distance method respectively, and the maximum likelihood method showed the lowest, 0.561. Moreover, in the evaluation of accuracy in water body image classification by NIR+RG images, the magalanobis and minimum distance method showed high values of 0.869 and 0.830 respectively, and in the artificial neural network method, it was very low as 0.779. Especially, RGB band revealed errors to classify trees or grasslands of Songsan amusement park as water body, but NIR+RG presented noticeable improvement in this matter. Therefore, it was concluded that images with NIR+RG band, compared those with RGB band, are more effective for detection of water body when the mahalanobis and minimum distance method were applied.

Estimation of Dynamic Vertical Displacement using Artificial Neural Network and Axial strain in Girder Bridge (인공신경망과 축방향 변형률을 이용한 거더 교량의 동적 수직 변위 추정)

  • Ok, Su Yeol;Moon, Hyun Su;Chun, Pang-Jo;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1655-1665
    • /
    • 2014
  • Dynamic displacements of structures shows general behavior of structures. Generally, It is used to estimate structure condition and trustworthy physical quantity directly. Especially, measuring vertical displacement which is affected by moving load is very important part to find or identify a problem of bridge in advance. However directly measuring vertical displacement of the bridge is difficult because of test conditions and restriction of measuring equipment. In this study, Artificial Neural Network (ANN) is used to suggest estimation method of bridge displacement to overcome constrain conditions, restriction and so on. Horizontal strain and vertical displacement which are measured by appling random moving load on the bridge are applied for learning and verification of ANN. Measured horizontal strain is used to learn ANN to estimate vertical displacement of the bridge. Numerical analysis is used to acquire learning data for axis strain and vertical displacement for applying ANN. Moving load scenario which is made by vehicle type and vehicle distance time using Pearson Type III distribution is applied to analysis modeling to reflect real traffic situation. Estimated vertical displacement in respect of horizontal strain according to learning result using ANN is compared with vertical displacement of experiment and it presents vertical displacement of experiment well.

Measurements on Transient Mixing Concentrations of Two Fuel Oils using a Quantitative Flow Visualization Technique (정량적 유동가시화 기술을 이용한 이종연료유 과도 혼합 농도분포 측정)

  • Yum, Joo-Ho;Doh, Deog-Hee;Cho, Gyeong-Rae;Min, Seong-Ki;Kim, Myung-Ho;Ryu, Gyong-Won
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.4
    • /
    • pp.364-372
    • /
    • 2012
  • Transient mixing states of two different fuel oils, dimethylformamide (DMF) oil and JetA1 oil, were investigated by using a color image processing and a neural network. A tank ($D{\times}H$, $310{\times}370mm$) was filled with JetA1 oil. The DMF oil was filled at a top tank, and was mixed with the JetA1 oil in the tank mixing tank via a sudden opening which was performed by nitrogen gas with 1.9 bar. An impeller was rotated with 700 rpm for mixing enhancements of the two fuel oils. To visualize the mixing state of the DMF oil with the JetA1 oil, the DMF oil was coated with Rhodamine B whose color was red. A LCD monitor was used for uniform illumination. The color changes of the DMF oil were captured by a camcoder and the images were transferred to a host computer for quantifying the information of color changes. The color images of two mixed oils were captured with the camcoder. The R, G, B color information of the captured images was used to quantify the concentration of the DMF oil. To quantify the concentration of the DMF oil in the JetA1 oil, a calibration of color-to-concentration was carried out before the main experiment was done. Transient mixing states of DMF oil with the JetA1 oil since after the sudden infiltration were quantified and characterized with the constructed visualization technique.

Empirical Research on Search model of Web Service Repository (웹서비스 저장소의 검색기법에 관한 실증적 연구)

  • Hwang, You-Sub
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.173-193
    • /
    • 2010
  • The World Wide Web is transitioning from being a mere collection of documents that contain useful information toward providing a collection of services that perform useful tasks. The emerging Web service technology has been envisioned as the next technological wave and is expected to play an important role in this recent transformation of the Web. By providing interoperable interface standards for application-to-application communication, Web services can be combined with component-based software development to promote application interaction and integration within and across enterprises. To make Web services for service-oriented computing operational, it is important that Web services repositories not only be well-structured but also provide efficient tools for an environment supporting reusable software components for both service providers and consumers. As the potential of Web services for service-oriented computing is becoming widely recognized, the demand for an integrated framework that facilitates service discovery and publishing is concomitantly growing. In our research, we propose a framework that facilitates Web service discovery and publishing by combining clustering techniques and leveraging the semantics of the XML-based service specification in WSDL files. We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the Web service domain. We have developed a Web service discovery tool based on the proposed approach using an unsupervised artificial neural network and empirically evaluated the proposed approach and tool using real Web service descriptions drawn from operational Web services repositories. We believe that both service providers and consumers in a service-oriented computing environment can benefit from our Web service discovery approach.