• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.036 seconds

An ROI Coding Technique of JPEG2000 Image Including Some Arbitrary ROI (임의의 ROI를 포함하는 JPEG2000 이미지의 ROI 코딩 기법)

  • Hong, Seok-Won;Kim, Sang-Bok;Seo, Yeong-Geon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.31-39
    • /
    • 2010
  • In some image processing system or the users who want to see a specific region of image simply, if a part of the image has higher quality than other regions, it would be a nice service. Specifically in mobile environments, preferential service was needed, as the screen size is small. So, JPEG2000 supplies this function. But this doesn't support the process to extract specific regions or service and does the functions to add some techniques. It is called by ROI(Region-of-Interest). In this paper, we use images including human faces, which are processed most preferentially and compressed with high quality. Before an image is served to the users, it is compressed and saved. Here, the face parts are compressed with higher quality than the background which are relatively with lower quality. This technique can offer better service with preferential transferring of the faces, too. Besides, whole regions of the image are compressed with same quality and after searching the faces, they can be preferentially transferred. In this paper, we use a face extraction approach based on neural network and the preferential processing with EBCOT of JPEG2000. For experimentation, we use images having several human faces and evaluate objectively and subjectively, and proved that this approach is a nice one.

A Study on Robust Feature Vector Extraction for Fault Detection and Classification of Induction Motor in Noise Circumstance (잡음 환경에서의 유도 전동기 고장 검출 및 분류를 위한 강인한 특징 벡터 추출에 관한 연구)

  • Hwang, Chul-Hee;Kang, Myeong-Su;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.187-196
    • /
    • 2011
  • Induction motors play a vital role in aeronautical and automotive industries so that many researchers have studied on developing a fault detection and classification system of an induction motor to minimize economical damage caused by its fault. With this reason, this paper extracts robust feature vectors from the normal/abnormal vibration signals of the induction motor in noise circumstance: partial autocorrelation (PARCOR) coefficient, log spectrum powers (LSP), cepstrum coefficients mean (CCM), and mel-frequency cepstrum coefficient (MFCC). Then, we classified different types of faults of the induction motor by using the extracted feature vectors as inputs of a neural network. To find optimal feature vectors, this paper evaluated classification performance with 2 to 20 different feature vectors. Experimental results showed that five to six features were good enough to give almost 100% classification accuracy except features by CCM. Furthermore, we considered that vibration signals could include noise components caused by surroundings. Thus, we added white Gaussian noise to original vibration signals, and then evaluated classification performance. The evaluation results yielded that LSP was the most robust in noise circumstance, then PARCOR and MFCC followed by LSP, respectively.

Development of The Freeway Operating Time Prediction Model Using Toll Collection System Data (고속도로 통행료수납자료를 이용한 통행시간 예측모형 개발)

  • 강정규;남궁성
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.151-162
    • /
    • 2002
  • The object of this study is to develop an operating time prediction model for expressways using toll collection data. A Prediction model based on modular neural network model was developed and tested using real data. Two toll collection system(TCS) data set. Seoul-Suwon section for short range and Seoul-Daejeon section for long range, in Kyongbu expressway line were collected and analyzed. A time series analysis on TCS data indicated that operating times on both ranges are in reasonable prediction ranges. It was also found that prediction for the long section was more complex than that for the short section. However, a long term prediction for the short section turned out to be more difficult than that for the long section because of the higher sensitivity to initial condition. An application of the suggested model produced accurate prediction time. The features of suggested prediction model are in the requirement of minimum (3) input layers and in the ability of stable operating time prediction.

Artificial Intelligence to forecast new nurse turnover rates in hospital (인공지능을 이용한 신규간호사 이직률 예측)

  • Choi, Ju-Hee;Park, Hye-Kyung;Park, Ji-Eun;Lee, Chang-Min;Choi, Byung-Gwan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.431-440
    • /
    • 2018
  • In this study, authors predicted probability of resignation of newly employed nurses using TensorFlow, an open source software library for numerical computation and machine learning developed by Google, and suggested strategic human resources management plan. Data of 1,018 nurses who resigned between 2010 and 2017 in single university hospital were collected. After the order of data were randomly shuffled, 80% of total data were used for machine leaning and the remaining data were used for testing purpose. We utilized multiple neural network with one input layer, one output layer and 3 hidden layers. The machine-learning algorithm correctly predicted for 88.7% of resignation of nursing staff with in one year of employment and 79.8% of that within 3 years of employment. Most of resigned nurses were in their late 20s and 30s. Leading causes of resignation were marriage, childbirth, childcare and personal affairs. However, the most common cause of resignation of nursing staff with in one year of employment were maladaptation to the work and problems in interpersonal relationship.

The Implementable Functions of the CoreNet of a Multi-Valued Single Neuron Network (단층 코어넷 다단입력 인공신경망회로의 함수에 관한 구현가능 연구)

  • Park, Jong Joon
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.593-602
    • /
    • 2014
  • One of the purposes of an artificial neural netowrk(ANNet) is to implement the largest number of functions as possible with the smallest number of nodes and layers. This paper presents a CoreNet which has a multi-leveled input value and a multi-leveled output value with a 2-layered ANNet, which is the basic structure of an ANNet. I have suggested an equation for calculating the capacity of the CoreNet, which has a p-leveled input and a q-leveled output, as $a_{p,q}={\frac{1}{2}}p(p-1)q^2-{\frac{1}{2}}(p-2)(3p-1)q+(p-1)(p-2)$. I've applied this CoreNet into the simulation model 1(5)-1(6), which has 5 levels of an input and 6 levels of an output with no hidden layers. The simulation result of this model gives, the maximum 219 convergences for the number of implementable functions using the cot(${\sqrt{x}}$) input leveling method. I have also shown that, the 27 functions are implementable by the calculation of weight values(w, ${\theta}$) with the multi-threshold lines in the weight space, which are diverged in the simulation results. Therefore the 246 functions are implementable in the 1(5)-1(6) model, and this coincides with the value from the above eqution $a_{5,6}(=246)$. I also show the implementable function numbering method in the weight space.

Development of groundwater level monitoring and forecasting technique for drought analysis (II) - Groundwater drought forecasting Using SPI, SGI and ANN (가뭄 분석을 위한 지하수위 모니터링 및 예측기법 개발(II) - 표준강수지수, 표준지하수지수 및 인공신경망을 이용한 지하수 가뭄 예측)

  • Lee, Jeongju;Kang, Shinuk;Kim, Taeho;Chun, Gunil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1021-1029
    • /
    • 2018
  • A primary objective of this study is to develop a drought forecasting technique based on groundwater which can be exploit for water supply under drought stress. For this purpose, we explored the lagged relationships between regionalized SGI (standardized groundwater level index) and SPI (standardized precipitation index) in view of the drought propagation. A regional prediction model was constructed using a NARX (nonlinear autoregressive exogenous) artificial neural network model which can effectively capture nonlinear relationships with the lagged independent variable. During the training phase, model performance in terms of correlation coefficient was found to be satisfactory with the correlation coefficient over 0.7. Moreover, the model performance was described by root mean squared error (RMSE). It can be concluded that the proposed approach is able to provide a reliable SGI forecasts along with rainfall forecasts provided by the Korea Meteorological Administration.

A Study on Classification of CNN-based Linux Malware using Image Processing Techniques (영상처리기법을 이용한 CNN 기반 리눅스 악성코드 분류 연구)

  • Kim, Se-Jin;Kim, Do-Yeon;Lee, Hoo-Ki;Lee, Tae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.634-642
    • /
    • 2020
  • With the proliferation of Internet of Things (IoT) devices, using the Linux operating system in various architectures has increased. Also, security threats against Linux-based IoT devices are increasing, and malware variants based on existing malware are constantly appearing. In this paper, we propose a system where the binary data of a visualized Executable and Linkable Format (ELF) file is applied to Local Binary Pattern (LBP) image processing techniques and a median filter to classify malware in a Convolutional Neural Network (CNN). As a result, the original image showed the highest accuracy and F1-score at 98.77%, and reproducibility also showed the highest score at 98.55%. For the median filter, the highest precision was 99.19%, and the lowest false positive rate was 0.008%. Using the LBP technique confirmed that the overall result was lower than putting the original ELF file through the median filter. When the results of putting the original file through image processing techniques were classified by majority, it was confirmed that the accuracy, precision, F1-score, and false positive rate were better than putting the original file through the median filter. In the future, the proposed system will be used to classify malware families or add other image processing techniques to improve the accuracy of majority vote classification. Or maybe we mean "the use of Linux O/S distributions for various architectures has increased" instead? If not, please rephrase as intended.

Directional Feature Extraction of Handwritten Numerals using Local min/max Operations (Local min/max 연산을 이용한 필기체 숫자의 방향특징 추출)

  • Jung, Soon-Won;Park, Joong-Jo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, we propose a directional feature extraction method for off-line handwritten numerals by using the morphological operations. Direction features are obtained from four directional line images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral lines. Conventional method for extracting directional features uses Kirsch masks which generate edge-shaped double line images for each direction, whereas our method uses directional erosion operations and generate single line images for each direction. To apply these directional erosion operations to the numeral image, preprocessing steps such as thinning and dilation are required, but resultant directional lines are more similar to numeral lines themselves. Our four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. For obtaining the higher recognition rates of the handwrittern numerals, we use the multiple feature which is comprised of our proposed feature and the conventional features of a kirsch directional feature and a concavity feature. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the CENPARMI numeral database of Concordia University, we have achieved a recognition rate of 98.35%.

  • PDF

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

An analysis of the signaling effect of FOMC statements (미 연준 통화정책방향 의결문의 시그널링 효과 분석)

  • Woo, Shinwook;Chang, Youngjae
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.321-334
    • /
    • 2020
  • The US Federal Reserve (Fed) has decided to cut interest rates. When we look at the expression of the FOMC statements at the time of policy change period we can understand that Fed has been communicating with markets through a change of word selection. However, there is a criticism that the method of analyzing the expression of the decision sentence through the context can be subjective and limited in qualitative analysis. In this paper, we evaluate the signaling effect of FOMC statements based on previous research. We analyze decision making characteristics from the viewpoint of text mining and try to predict future policy trend changes by capturing changes in expressions between statements. For this purpose, a decision tree and neural network models are used. As a result of the analysis, it can be judged that the discrepancy indicators between statements could be used to predict the policy change in the future and that the US Federal Reserve has systematically implemented policy signaling through the policy statements.