• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.043 seconds

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed;Azab, Marc;Ahmad, Zeeshan;Accouche, Oussama;Raza, Ali;Alashker, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.515-535
    • /
    • 2022
  • The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

A Study on the Demand Prediction Model for Repair Parts of Automotive After-sales Service Center Using LSTM Artificial Neural Network (LSTM 인공신경망을 이용한 자동차 A/S센터 수리 부품 수요 예측 모델 연구)

  • Jung, Dong Kun;Park, Young Sik
    • The Journal of Information Systems
    • /
    • v.31 no.3
    • /
    • pp.197-220
    • /
    • 2022
  • Purpose The purpose of this study is to identifies the demand pattern categorization of repair parts of Automotive After-sales Service(A/S) and proposes a demand prediction model for Auto repair parts using Long Short-Term Memory (LSTM) of artificial neural networks (ANN). The optimal parts inventory quantity prediction model is implemented by applying daily, weekly, and monthly the parts demand data to the LSTM model for the Lumpy demand which is irregularly in a specific period among repair parts of the Automotive A/S service. Design/methodology/approach This study classified the four demand pattern categorization with 2 years demand time-series data of repair parts according to the Average demand interval(ADI) and coefficient of variation (CV2) of demand size. Of the 16,295 parts in the A/S service shop studied, 96.5% had a Lumpy demand pattern that large quantities occurred at a specific period. lumpy demand pattern's repair parts in the last three years is predicted by applying them to the LSTM for daily, weekly, and monthly time-series data. as the model prediction performance evaluation index, MAPE, RMSE, and RMSLE that can measure the error between the predicted value and the actual value were used. Findings As a result of this study, Daily time-series data were excellently predicted as indicators with the lowest MAPE, RMSE, and RMSLE values, followed by Weekly and Monthly time-series data. This is due to the decrease in training data for Weekly and Monthly. even if the demand period is extended to get the training data, the prediction performance is still low due to the discontinuation of current vehicle models and the use of alternative parts that they are contributed to no more demand. Therefore, sufficient training data is important, but the selection of the prediction demand period is also a critical factor.

Inverse Estimation and Verification of Parameters for Improving Reliability of Impact Analysis of CFRP Composite Based on Artificial Neural Networks (인공신경망 기반 CFRP 복합재료 충돌 해석의 신뢰성 향상을 위한 파라미터 역추정 및 검증)

  • Ji-Ye Bak;Jeong Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.59-67
    • /
    • 2023
  • Damage caused by impact on a vehicle composed of CFRP(carbon fiber reinforced plastic) composite to reduce weight in the aerospace industries is related to the safety of passengers. Therefore, it is important to understand the damage behavior of materials that is invisible in impact situations, and research through the FEM(finite element model) is needed to simulate this. In this study, FEM suitable for predicting damage behavior was constructed for impact analysis of unidirectional laminated composite. The calibration parameters of the MAT_54 Enhanced Composite Damage material model in LS-DYNA were acquired by inverse estimation through ANN(artificial neural network) model. The reliability was verified by comparing the result of experiment with the results of the ANN model for the obtained parameter. It was confirmed that accuracy of FEM can be improved through optimization of calibration parameters.

AI based complex sensor application study for energy management in WTP (정수장에서의 에너지 관리를 위한 AI 기반 복합센서 적용 연구)

  • Hong, Sung-Taek;An, Sang-Byung;Kim, Kuk-Il;Sung, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.322-323
    • /
    • 2022
  • The most necessary thing for the optimal operation of a water purification plant is to accurately predict the pattern and amount of tap water used by consumers. The required amount of tap water should be delivered to the drain using a pump and stored, and the required flow rate should be supplied in a timely manner using the minimum amount of electrical energy. The short-term demand forecasting required from the point of view of energy optimization operation among water purification plant volume predictions has been made in consideration of seasons, major periods, and regional characteristics using time series analysis, regression analysis, and neural network algorithms. In this paper, we analyzed energy management methods through AI-based complex sensor applicability analysis such as LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units), which are types of cyclic neural networks.

  • PDF

Language-based Classification of Words using Deep Learning (딥러닝을 이용한 언어별 단어 분류 기법)

  • Zacharia, Nyambegera Duke;Dahouda, Mwamba Kasongo;Joe, Inwhee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.411-414
    • /
    • 2021
  • One of the elements of technology that has become extremely critical within the field of education today is Deep learning. It has been especially used in the area of natural language processing, with some word-representation vectors playing a critical role. However, some of the low-resource languages, such as Swahili, which is spoken in East and Central Africa, do not fall into this category. Natural Language Processing is a field of artificial intelligence where systems and computational algorithms are built that can automatically understand, analyze, manipulate, and potentially generate human language. After coming to discover that some African languages fail to have a proper representation within language processing, even going so far as to describe them as lower resource languages because of inadequate data for NLP, we decided to study the Swahili language. As it stands currently, language modeling using neural networks requires adequate data to guarantee quality word representation, which is important for natural language processing (NLP) tasks. Most African languages have no data for such processing. The main aim of this project is to recognize and focus on the classification of words in English, Swahili, and Korean with a particular emphasis on the low-resource Swahili language. Finally, we are going to create our own dataset and reprocess the data using Python Script, formulate the syllabic alphabet, and finally develop an English, Swahili, and Korean word analogy dataset.

Recurrent Neural Network Model for Predicting Tight Oil Productivity Using Type Curve Parameters for Each Cluster (군집 별 표준곡선 매개변수를 이용한 치밀오일 생산성 예측 순환신경망 모델)

  • Han, Dong-kwon;Kim, Min-soo;Kwon, Sun-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.297-299
    • /
    • 2021
  • Predicting future productivity of tight oil is an important task for analyzing residual oil recovery and reservoir behavior. In general, productivity prediction is made using the decline curve analysis(DCA). In this study, we intend to propose an effective model for predicting future production using deep learning-based recurrent neural networks(RNN), LSTM, and GRU algorithms. As input variables, the main parameters are oil, gas, water, which are calculated during the production of tight oil, and the type curve calculated through various cluster analyzes. the output variable is the monthly oil production. Existing empirical models, the DCA and RNN models, were compared, and an optimal model was derived through hyperparameter tuning to improve the predictive performance of the model.

  • PDF

Transfer Learning-Based Vibration Fault Diagnosis for Ball Bearing (전이학습을 이용한 볼베어링의 진동진단)

  • Subin Hong;Youngdae Lee;Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.845-850
    • /
    • 2023
  • In this paper, we propose a method for diagnosing ball bearing vibration using transfer learning. STFT, which can analyze vibration signals in time-frequency, was used as input to CNN to diagnose failures. In order to rapidly learn CNN-based deep artificial neural networks and improve diagnostic performance, we proposed a transfer learning-based deep learning learning technique. For transfer learning, the feature extractor and classifier were selectively learned using a VGG-based image classification model, the data set for learning was publicly available ball bearing vibration data provided by Case Western Reserve University, and performance was evaluated by comparing the proposed method with the existing CNN model. Experimental results not only prove that transfer learning is useful for condition diagnosis in ball bearing vibration data, but also allow other industries to use transfer learning to improve condition diagnosis.

Vector and Thickness Based Learning Augmentation Method for Efficiently Collecting Concrete Crack Images

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.65-73
    • /
    • 2023
  • In this paper, we propose a data augmentation method based on CNN(Convolutional Neural Network) learning for efficiently obtaining concrete crack image datasets. Real concrete crack images are not only difficult to obtain due to their unstructured shape and complex patterns, but also may be exposed to dangerous situations when acquiring data. In this paper, we solve the problem of collecting datasets exposed to such situations efficiently in terms of cost and time by using vector and thickness-based data augmentation techniques. To demonstrate the effectiveness of the proposed method, experiments were conducted in various scenes using U-Net-based crack detection, and the performance was improved in all scenes when measured by IoU accuracy. When the concrete crack data was not augmented, the percentage of incorrect predictions was about 25%, but when the data was augmented by our method, the percentage of incorrect predictions was reduced to 3%.

Prediction of CDOM absorption coefficient using Oversampling technique and Machine Learning in upstream reach of Baekje weir (백제보 상류하천구간의 Oversampling technique과 Machine Learning을 활용한 CDOM 흡수계수 예측)

  • Kim, Jinuk;Jang, Wonjin;Kim, Jinhwi;Park, Yongeun;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.46-46
    • /
    • 2022
  • 유기물의 복잡한 혼합물인 CDOM(Colored or Chromophoric Dissolved Organic Matter)은 하천 내 BOD(Biological Oxygen Demand), COD(Chemical Oxygen Demand) 및 유기 오염물질과 상당한 관련이 있다. CDOM은 가시광선 영역에서 빛을 흡수하는 성질을 가지고 있으며, 최근 원격감지 기술로 CDOM을 모니터링하기 위한 연구가 진행되고 있다. 본 연구에서는 백제보 상류 23km 구간에서 3년(2016~2018) 중 13일의 초분광영상을 활용하여 머신러닝 기반 CDOM을 추정 알고리즘을 개발하고자 한다. 초분광영상은 400~970 nm의 범위의 4 nm 간격 127개 대역의 분광해상도와 2 m의 공간해상도를 가진 항공기 탑재 AsiaFENIX 초분광 센서를 통해 수집하였으며 CDOM은 Millipore polycarbonate filter (𝚽47, 0.2 ㎛)에서 여과된 CDOM 샘플 자료를 200~800 nm의 흡수계수 스펙트럼으로 추출하여 사용하였다. CDOM 값은 전체기간 동안 2.0~11.0 m-1의 값 분포를 보였으며 5 m-1이상의 고농도 구간 자료개수가 전체 153개 샘플자료 중 21개로 불균형하다. 따라서 ADASYN(Adaptive Synthesis Sampling Approach)의 oversampling 방법으로 생성된 합성 데이터를 사용하여 원본 데이터의 소수계층 데이터 불균형을 해결하고 모델 예측 성능을 개선하고자 하였다. 생성된 합성 데이터를 입력변수로 하여 ANN(Artificial Neural Netowk)을 활용한 CDOM 예측 알고리즘을 구축하였다. ADASYN 기법을 통한 합성 데이터는 관측된 데이터의 불균형을 해결하여 기계학습 모델의 CDOM 탐지 성능을 향상시킬 수 있으며, 저수지 내 유기 오염물질 관리를 위한 설계를 지원하는데 사용할 수 있을 것으로 판단된다.

  • PDF

A method of assisting small intestine capsule endoscopic lesion examination using artificial neural network (인공신경망을 이용한 소장 캡슐 내시경 병변 검사 보조 방법)

  • Wang, Tae-su;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.2-5
    • /
    • 2022
  • Human organs in the body have a complex structure, and in particular, the small intestine is about 7m long, so endoscopy is not easy and the risk of endoscopy is high. Currently, the test is performed with a capsule endoscope, and the test time is very long. The doctor connects the removed storage device to the computer to store the patient's capsule endoscope image and reads it using a program, but the capsule endoscope test results in a long image length, which takes a lot of time to read. In addition, in the case of the small intestine, there are many curves due to villi, so the occlusion area or light and shade of the image are clearly visible during the examination, and there may be cases where lesions and abnormal signs are missed during the examination. In this paper, we provide a method of assisting small intestine capsule endoscopic lesion examination using artificial neural networks to shorten the doctor's image reading time and improve diagnostic reliability.

  • PDF