• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.032 seconds

Study on Nonlinearites of Short Term, Beat-to-beat Variability in Cardiovascular Signals (심혈관 신호에 있어서 단기간 beat-to-beat 변이의 비선형 역할에 관한 연구)

  • Han-Go Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • Numerous studies of short-term, beat-to-beat variability in cardiovascular signals have used linear analysis techniques. However, no study has been done about the appropriateness of linear techniques or the comparison between linearities and nonlinearities in short-term, beat-to-beat variability. This paper aims to verify the appropriateness of linear techniques by investigating nonlinearities in short-term, beat-to-beat variability. We compared linear autoregressive moving average(ARMA) with nonlinear neural network(NN) models for predicting current instantaneous heart rate(HR) and mean arterial blood pressure(BP) from past HRs and BPs. To evaluate these models. we used HR and BP time series from the MIMIC database. Experimental results indicate that NN-based nonlinearities do not play a significant role and suggest that 10 technique provides adequate characterization of the system dynamics responsible for generating short-term, beat-to-beat variability.

The detection of cavitation in hydraulic machines by use of ultrasonic signal analysis

  • Gruber, P.;Farhat, M.;Odermatt, P.;Etterlin, M.;Lerch, T.;Frei, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.264-273
    • /
    • 2015
  • This presentation describes an experimental approach for the detection of cavitation in hydraulic machines by use of ultrasonic signal analysis. Instead of using the high frequency pulses (typically 1MHz) only for transit time measurement different other signal characteristics are extracted from the individual signals and its correlation function with reference signals in order to gain knowledge of the water conditions. As the pulse repetition rate is high (typically 100Hz), statistical parameters can be extracted of the signals. The idea is to find patterns in the parameters by a classifier that can distinguish between the different water states. This classification scheme has been applied to different cavitation sections: a sphere in a water flow in circular tube at the HSLU in Lucerne, a NACA profile in a cavitation tunnel and two Francis model test turbines all at LMH in Lausanne. From the signal raw data several statistical parameters in the time and frequency domain as well as from the correlation function with reference signals have been determined. As classifiers two methods were used: neural feed forward networks and decision trees. For both classification methods realizations with lowest complexity as possible are of special interest. It is shown that two to three signal characteristics, two from the signal itself and one from the correlation function are in many cases sufficient for the detection capability. The final goal is to combine these results with operating point, vibration, acoustic emission and dynamic pressure information such that a distinction between dangerous and not dangerous cavitation is possible.

Online Hard Example Mining for Training One-Stage Object Detectors (단-단계 물체 탐지기 학습을 위한 고난도 예들의 온라인 마이닝)

  • Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.5
    • /
    • pp.195-204
    • /
    • 2018
  • In this paper, we propose both a new loss function and an online hard example mining scheme for improving the performance of single-stage object detectors which use deep convolutional neural networks. The proposed loss function and the online hard example mining scheme can not only overcome the problem of imbalance between the number of annotated objects and the number of background examples, but also improve the localization accuracy of each object. Therefore, the loss function and the mining scheme can provide intrinsically fast single-stage detectors with detection performance higher than or similar to that of two-stage detectors. In experiments conducted with the PASCAL VOC 2007 benchmark dataset, we show that the proposed loss function and the online hard example mining scheme can improve the performance of single-stage object detectors.

The Difference Analysis between Maturity Stages of Venture Firms by Classification Techniques of Big Data (빅데이터 분류 기법에 따른 벤처 기업의 성장 단계별 차이 분석)

  • Jung, Byoungho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.197-212
    • /
    • 2019
  • The purpose of this study is to identify the maturity stages of venture firms through classification analysis, which is widely used as a big data technique. Venture companies should develop a competitive advantage in the market. And the maturity stage of a company can be classified into five stages. I will analyze a difference in the growth stage of venture firms between the survey response and the statistical classification methods. The firm growth level distinguished five stages and was divided into the period of start-up and declines. A classification method of big data uses popularly k-mean cluster analysis, hierarchical cluster analysis, artificial neural network, and decision tree analysis. I used variables that asset increase, capital increase, sales increase, operating profit increase, R&D investment increase, operation period and retirement number. The research results, each big data analysis technique showed a large difference of samples sized in the group. In particular, the decision tree and neural networks' methods were classified as three groups rather than five groups. The groups size of all classification analysis was all different by the big data analysis methods. Furthermore, according to the variables' selection and the sample size may be dissimilar results. Also, each classed group showed a number of competitive differences. The research implication is that an analysts need to interpret statistics through management theory in order to interpret classification of big data results correctly. In addition, the choice of classification analysis should be determined by considering not only management theory but also practical experience. Finally, the growth of venture firms needs to be examined by time-series analysis and closely monitored by individual firms. And, future research will need to include significant variables of the company's maturity stages.

A Study on Wind Speed Estimation and Maximum Power Point Tracking scheme for Wind Turbine System (풍력발전기를 위한 신경망 기반의 풍속 추정 및 MPPT 기법에 관한 연구)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.852-857
    • /
    • 2010
  • As the wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is on how to efficiently operate the wind turbines in a wide range of wind speeds. In general, the wind speed is the main factor that impact on the dynamics of wind turbine system. Wind turbine algorithms are thus required to improve the performance of wind speed measurements. However, the accurate measurement of the effective wind speed using wind gauge and similar sensors is difficult such that control systems are needed for wind speed estimation using various techniques. Therefore, this research suggests the Maximum Power Point Tracking (MPPT) method for tracking the wind speed based on neural networks. Design experiments were carried out in laboratory environment to validate the application of the proposed method.

Structure of the Mixed Neural Networks Based On Orthogonal Basis Functions (직교 기저함수 기반의 혼합 신경회로망 구조)

  • Kim, Seong-Joo;Seo, Jae-Yong;Cho, Hyun-Chan;Kim, Seong-Hyun;Kim, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.6
    • /
    • pp.47-52
    • /
    • 2002
  • The wavelet functions are originated from scaling functions and can be used as activation function in the hidden node of the network by deciding two parameters such as scale and center. In this paper, we would like to propose the mixed structure. When we compose the WNN using wavelet functions, we propose to set a single scale function as a node function together. The properties of the proposed structure is that while one scale function approximates the target function roughly, the other wavelet functions approximate it finely. During the determination of the parameters, the wavelet functions can be determined by the global search algorithm such as genetic algorithm to be suitable for the suggested problem. Finally, we use the back-propagation algorithm in the learning of the weights.

Experimental Performance Comparison for Prediction of Red Tide Phenomenon (적조현상의 실험적 예측성능 비교)

  • Heo, Won-Ji;Won, Jae-Kang;Jung, Yong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • In recent years global climate change of hurricanes and torrential rains are going to significantly, that increase damages to property and human life. The disasters have been several claimed in every field. In future, climate changes blowing are keen to strike released to the world like in several movies. Reducing the damage of long-term weather phenomena are emerging with predicting changes in weather. In this study, it is shown how to predict the red tide phenomenon with multiple linear regression analysis and artificial neural network techniques. The red tide phenomenon causing risk could be reduced by filtering sensor data which are transmitted and forecasted in real time. It could be ubiquitous driven custom marine information service system, and forecasting techniques to use throughout the meteorological disasters to minimize damage.

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.

Customer Churn Prediction of Automobile Insurance by Multiple Models (다중모델을 이용한 자동차 보험 고객의 이탈예측)

  • LeeS Jae-Sik;Lee Jin-Chun
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.2
    • /
    • pp.167-183
    • /
    • 2006
  • Since data mining attempts to find unknown facts or rules by dealing with also vaguely-known data sets, it always suffers from high error rate. In order to reduce the error rate, many researchers have employed multiple models in solving a problem. In this research, we present a new type of multiple models, called DyMoS, whose unique feature is that it classifies the input data and applies the different model developed appropriately for each class of data. In order to evaluate the performance of DyMoS, we applied it to a real customer churn problem of an automobile insurance company, The result shows that the DyMoS outperformed any model which employed only one data mining technique such as artificial neural network, decision tree and case-based reasoning.

  • PDF

Dynamic Gesture Recognition for the Remote Camera Robot Control (원격 카메라 로봇 제어를 위한 동적 제스처 인식)

  • Lee Ju-Won;Lee Byung-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1480-1487
    • /
    • 2004
  • This study is proposed the novel gesture recognition method for the remote camera robot control. To recognize the dynamics gesture, the preprocessing step is the image segmentation. The conventional methods for the effectively object segmentation has need a lot of the cole. information about the object(hand) image. And these methods in the recognition step have need a lot of the features with the each object. To improve the problems of the conventional methods, this study proposed the novel method to recognize the dynamic hand gesture such as the MMS(Max-Min Search) method to segment the object image, MSM(Mean Space Mapping) method and COG(Conte. Of Gravity) method to extract the features of image, and the structure of recognition MLPNN(Multi Layer Perceptron Neural Network) to recognize the dynamic gestures. In the results of experiment, the recognition rate of the proposed method appeared more than 90[%], and this result is shown that is available by HCI(Human Computer Interface) device for .emote robot control.