• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.036 seconds

3D Object Recognition and Accurate Pose Calculation Using a Neural Network (인공신경망을 이용한 삼차원 물체의 인식과 정확한 자세계산)

  • Park, Gang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1929-1939
    • /
    • 1999
  • This paper presents a neural network approach, which was named PRONET, to 3D object recognition and pose calculation. 3D objects are represented using a set of centroidal profile patterns that describe the boundary of the 2D views taken from evenly distributed view points. PRONET consists of the training stage and the execution stage. In the training stage, a three-layer feed-forward neural network is trained with the centroidal profile patterns using an error back-propagation method. In the execution stage, by matching a centroidal profile pattern of the given image with the best fitting centroidal profile pattern using the neural network, the identity and approximate orientation of the real object, such as a workpiece in arbitrary pose, are obtained. In the matching procedure, line-to-line correspondence between image features and 3D CAD features are also obtained. An iterative model posing method then calculates the more exact pose of the object based on initial orientation and correspondence.

Back-bead Prediction and Weldability Estimation Using An Artificial Neural Network (인공신경망을 이용한 이면비드 예측 및 용접성 평가)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.79-86
    • /
    • 2007
  • The shape of excessive penetration mainly depends on welding conditions(welding current and welding voltage), and welding process(groove gap and welding speed). These conditions are the major affecting factors to width and height of back bead. In this paper, back-bead prediction and weldability estimation using artificial neural network were investigated. Results are as follows. 1) If groove gap, welding current, welding voltage and welding speed will be previously determined as a welding condition, width and height of back bead can be predicted by artificial neural network system without experimental measurement. 2) From the result applied to three weld quality levels(ISO 5817), both experimented measurement using vision sensor and predicted mean values by artificial neural network showed good agreement. 3) The width and height of back bead are proportional to groove gap, welding current and welding voltage, but welding speed. is not.

Development and application of artificial neural network for landslide susceptibility mapping and its verfication at Janghung, Korea

  • Yu, Young-Tae;Lee, Moung-Jin;Won, Joong-Sun
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.77-82
    • /
    • 2003
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the developed techniques to the study area of janghung in Korea. Landslide locations were identified in the study area from interpretation of satellite image and field survey data, and a spatial database of the topography, soil, forest and land use were consturced. The 13 landslide-related factors were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods, and the susceptibility map was made with a e15 program. For this, the weights of each factor were determinated in 5 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated using the weights and the susceptibility maps were made with a GIS to the 5 cases. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to analyze the landslide susceptibility.

  • PDF

Prediction of Turbidity in Treated Water and the Estimation of the Optimum Feed Concentration of Coagulants in Rapid Mixing Process using an Artificial Neural Network Model (인공신경망 모형을 이용한 급속혼화공정에서 적정 응집제 주입농도 결정 및 응집처리후 탁도의 예측)

  • Jeong, Dong-Hwan;Park, Kyoohong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • The training and prediction modeling using an artificial neural network was implemented to predict the turbidity of treated water as well as to estimate the optimized feed concentration of polyaluminium chloride (PACl) in a water treatment plant. The parameters used in the input layers were pH, temperature, turbidity and alkalinity, while those in output layers were PACl and turbidity of treated water. Levenberg-Marquadt method of feedforward back-propagation perceptron in the neural network toolbox of MATLAB program was used in this study. Correlation coefficients of the training data with the measured data were 0.9997 for PACl and 0.6850 for turbidity and those of the testing data with measured data were 0.9140 for PACl and 0.3828 for turbidity, when four parameters at input layer, 12-12 nodes each at both the first and the second hidden layers, and two parameters(PACl and turbidity) at output layer were used. Although the predictability of PACl was improved, compared to that of the previous studies to use the only coagulant dose as output layer, turbidity in treated water could not be predicted well. Acquisition of more data through several years obtained with the advanced on-line measuring system could make the artificial neural network useful and practical in actual water treatment plants.

Harmonic Mitigation and Power Factor Improvement using Fuzzy Logic and Neural Network Controlled Active Power Filter

  • Kumar, V.Suresh;Kavitha, D.;Kalaiselvi, K.;Kannan, P. S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.520-527
    • /
    • 2008
  • This work focuses on the evaluation of active power filter which is controlled by fuzzy logic and neural network based controller for harmonic mitigation and power factor enhancement. The APF consists of a variable DC voltage source and a DC/AC inverter. The task of an APF is to make the line current waveform as close as possible to a sinusoid in phase with the line voltage by injecting the compensation current. The compensation current is estimated using adaptive neural network. Using the estimated current, the proposed APF is controlled using neural network and fuzzy logic. Computer simulations of the proposed APF are performed using MATLAB. The results show that the proposed techniques for the evaluation of APF can reduce the total harmonic distortion less than 3% and improve the power factor of the system to almost unity.

The prediction of fatigue life of muffler by artificial neural network (인공신경망을 이용한 머플러의 피로 수명 예측)

  • Park, Soon-Cheol;Kang, Sung-Su;Yoon, Jin-Ho;Kim, Gug-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.869-876
    • /
    • 2013
  • In order to estimate the fatigue life of mufflers at the early stage of researches and designs, the new prediction process was developed by the artificial neural network, which has the algorism of weldment properties. Bending fatigue test was carried out for defining the characteristics of muffler weldment fatigue life and damage. For considering and predicting mechanical and fatigue properties of the muffler, the maximum stress of weldment was adapted as the variable of artificial neural network training. Also, it was compared with the fatigue life predicting results using fatigue notch factors, for proving the newly developed process of the artificial neural network.

Development of Neural Network Model for Pridiction of Daily Maximum Ozone Concentration in Summer (하계의 일 최고 오존농도 예측을 위한 신경망모델의 개발)

  • 김용국;이종범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.224-232
    • /
    • 1994
  • A new neural network model has been developed to predict short-term air pollution concentration. In addition, a multiple regression model widely used in statistical analysis was tested. These models were applied for prediction of daily maximum ozone concentration in Seoul during the summer season of 1991. The time periods between May and September 1989 and 1990 were utilized to train set of learning patterns in neural network model, and to estimate multiple regression model. To evaluate the results of the different models, several Performance indices were used. The results indicated that the multiple regression model tended to underpredict the daily maximum ozone concentration with small r$^{2}$(0.38). Also, large errors were found in this model; 21.1 ppb for RMSE, 0.324 for NMSE, and -0.164 for MRE. On the other hand, the results obtained from the neural network model were very promising. Thus, we can know that this model has a prominent efficiency in the adaptive control for the non-linear multi- variable systems such as photochemical oxidants. Also, when the recent new information was added in the neural network model, prediction accuracy was increased. From the new model, the values of RMSE, NMSE and r$^{2}$ were 13.2ppb, 0.089, 0.003 and 0.55 respectively.

  • PDF

Maximum Torque Control of an IPMSM Drive Using an Adaptive Learning Fuzzy-Neural Network

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.468-476
    • /
    • 2012
  • The interior permanent magnet synchronous motor (IPMSM) has been widely used in electric vehicle applications due to its excellent power to weigh ratio. This paper proposes the maximum torque control of an IPMSM drive using an adaptive learning (AL) fuzzy neural network (FNN) and an artificial neural network (ANN). This control method is applicable over the entire speed range while taking into consideration the limits of the inverter's rated current and voltage. This maximum torque control is an executed control through an optimal d-axis current that is calculated according to the operating conditions. This paper proposes a novel technique for the high performance speed control of an IPMSM using AL-FNN and ANN. The AL-FNN is a control algorithm that is a combination of adaptive control and a FNN. This control algorithm has a powerful numerical processing capability and a high adaptability. In addition, this paper proposes the speed control of an IPMSM using an AL-FNN, the estimation of speed using an ANN and a maximum torque control using the optimal d-axis current according to the operating conditions. The proposed control algorithm is applied to an IPMSM drive system. This paper demonstrates the validity of the proposed algorithms through result analysis based on experiments under various operating conditions.

A Study on Prediction of Attendance in Korean Baseball League Using Artificial Neural Network (인경신경망을 이용한 한국프로야구 관중 수요 예측에 관한 연구)

  • Park, Jinuk;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.12
    • /
    • pp.565-572
    • /
    • 2017
  • Traditional method for time series analysis, autoregressive integrated moving average (ARIMA) allows to mine significant patterns from the past observations using autocorrelation and to forecast future sequences. However, Korean baseball games do not have regular intervals to analyze relationship among the past attendance observations. To address this issue, we propose artificial neural network (ANN) based attendance prediction model using various measures including performance, team characteristics and social influences. We optimized ANNs using grid search to construct optimal model for regression problem. The evaluation shows that the optimal and ensemble model outperform the baseline model, linear regression model.

Sorting Cut Roses with Color Image Processing and Neural Network

  • Bae, Yeong Hwan;Seo, Hyong Seog;Choi, Khy Hong
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.100-105
    • /
    • 2000
  • Quality sorting of cut flowers is very essential to increase the value of products. There are many factors that determine the quality of cut flowers such as length, thickness, and straightness of stem, and color and maturity of bud. Among these factors, the straightness of stem and the maturity of bud are generally considered to be more difficult to evaluate. A prototype grading and sorting machine for cut flowers was developed and tested for a rose variety. The machine consisted of a chain-drive feed mechanism, a pneumatic discharge system, and a grading system utilizing color image processing and neural network. Artificial neural network algorithm was utilized to grade cut roses based on the straightness of stem and maturity of bud. Test results showed 89% agreement with human expert for the straightness of stem and 90% agreement for the maturity of bud. Average processing time for evaluating straightness of the stem and maturity of the bud were 1.01 and 0.44 second, respectively. Application of neural network eliminated difficulties in determining criteria of each grade category while maintaining similar level of classification error.

  • PDF