• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.035 seconds

Estimation method of noise intensity by neural network for application in speech enhancement (음성강조에의 응용을 위한 신경회로망에 의한 잡음량의 추정법)

  • Choi Jae-Seung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.129-136
    • /
    • 2005
  • To reduce the noise in the noisy speech, it is desirable to change the parameters of the speech processing system according to the noise intensity to reproduce a good quality speech. This paper proposes an estimation method of noise intensity using a three layered neural network, which is able to learn the three graded speeches that is degraded by white noise or road noise. Experimental results demonstrate that the noise intensity could be estimated by the neural network. Even if the speakers and speech data are different from the training data, estimation rates for the noise intensity can be estimated by the neural network with an average accuracy of $95\%$ or more for white noise.

Scene-based Nonuniformity Correction for Neural Network Complemented by Reducing Lense Vignetting Effect and Adaptive Learning rate

  • No, Gun-hyo;Hong, Yong-hee;Park, Jin-ho;Jhee, Ho-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.81-90
    • /
    • 2018
  • In this paper, reducing lense Vignetting effect and adaptive learning rate method are proposed to complement Scribner's neural network for nuc algorithm which is the effective algorithm in statistic SBNUC algorithm. Proposed reducing vignetting effect method is updated weight and bias each differently using different cost function. Proposed adaptive learning rate for updating weight and bias is using sobel edge detection method, which has good result for boundary condition of image. The ordinary statistic SBNUC algorithm has problem to compensate lense vignetting effect, because statistic algorithm is updated weight and bias by using gradient descent method, so it should not be effective for global weight problem same like, lense vignetting effect. We employ the proposed methods to Scribner's neural network method(NNM) and Torres's reducing ghosting correction for neural network nuc algorithm(improved NNM), and apply it to real-infrared detector image stream. The result of proposed algorithm shows that it has 10dB higher PSNR and 1.5 times faster convergence speed then the improved NNM Algorithm.

A Study on Pathological Pattern Detection using Neural Network on X-Ray Chest Image (신경회로망을 이용한 X-선 흉부 영상의 병변 검출에 관한 연구)

  • 이주원;이한욱;이종회;조원래;장두봉;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.371-378
    • /
    • 2000
  • In this study, we proposed pathological pattern detection system for X-ray chest image using artificial neural network. In a physical examination, radiologists have checked on the chest image projected the view box by a magnifying glass and found out what the disease is. Here, the detection of X-ray fluoroscopy is tedious and time-consuming for human doing. Lowering of efficiency for chest diagnosis is caused by lots mistakes of radiologist because of detecting the micro pathology from the film of small size. So, we proposed the method for disease detection using artificial neural network and digital image processing on a X-ray chest image. This method composes the function of image sampling, median filter, image equalizer used neural network and pattern recognition used neural network. We confirm this method has improved the problem of a conventional method.

  • PDF

Speed Estimation and Control of IPMSM Drive using NFC and ANN (NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.282-289
    • /
    • 2005
  • This paper proposes a fuzzy neural network controller based on the vector control for interior permanent magnet synchronous motor(IPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability This paper does not oかy presents speed control of IPMSM using neuro-fuzzy control(NFC) but also speed estimation using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Thus, it is presented the theoretical analysis as well as the analysis results to verify the effectiveness of the proposed method in this paper.

Trajectory Control of a Robot Manipulator by TDNN Multilayer Neural Network (TDNN 다층 신경회로망을 사용한 로봇 매니퓰레이터에 대한 궤적 제어)

  • 안덕환;양태규;이상효;유언무
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.5
    • /
    • pp.634-642
    • /
    • 1993
  • In this paper a new trajectory control method is proposed for a robot manipulator using a time delay neural network(TDNN) as a feedforward controller with an algorithm to learn inverse dynamics of the manipulator. The TDNN structure has so favorable characteristics that neurons can extract more dynamic information from both present and past input signals and perform more efficient learning. The TDNN neural network receives two normalized inputs, one of which is the reference trajectory signal and the other of which is the error signals from the PD controller. It is proved that the normalized inputs to the TDNN neural network can enhance the learning efficiency of the neural network. The proposed scheme was investigated for the planar robot manipulator with two joints by computer simulation.

  • PDF

Design of Adaptive Fuzzy Logic Controller for SVC using Tabu Search and Neural Network (Tabu 탐색법과 신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hun;Hwang, Gi-Hyeon;Kim, Hyeong-Su;Park, Jun-Ho;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.188-195
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLS[10] for three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[10].

A Study on Insulation Degradation Diagnosis Using a Neural Network (신경회로망을 이용한 절연 열화진단에 관한 연구)

  • 박재준
    • The Journal of Information Technology
    • /
    • v.2 no.2
    • /
    • pp.13-22
    • /
    • 1999
  • In this paper, we purpose automatic diagnosis in online, as the fundamental study to diagnose the partial discharge mechanism and to predict the lifetime by introduction a neural network. In the proposed method, we use AE(acoustic emission) sensing system and calculate a quantitative statistic parameter by pulse number and amplitude. Using statically parameters such as the center of gravity(G) and the gradient if the discharge distribute(C), we analyzed the early stage and the middle stage. the quantitative statistic parameters are learned by a neural network. The diagnosis of insulation degradation and a lifetime prediction by the early stage time are achieved. On the basis of revealed excellent diagnosis ability through the neural network learning for the patterns during degradation, it was proved that the neural network is appropriate for degradation diagnosis and lifetime prediction in partial discharge.

  • PDF

Analysis of Dynamical State Transition and Effects of Chaotic Signal in Continuous-Time Cyclic Neural Network (리미트사이클을 발생하는 연속시간 모델 순환결합형 신경회로망에서 카오스 신호의 영향)

  • Park Cheol-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.396-401
    • /
    • 2006
  • It is well-known that a neural network with cyclic connections generates plural limit cycles, thus, being used as a memory system for storing large number of dynamic information. In this paper, a continuous-time cyclic connection neural network was built so that each neuron is connected only to its nearest neurons with binary synaptic weights of ${\pm}1$. The type and the number of limit cycles generated by such network has also been demonstrated through simulation. In particular, the effect of chaos signal for transition between limit cycles has been tested. Furthermore, it is evaluated whether the chaotic noise is more effective than random noise in the process of the dynamical neural networks.

Design of Adaptive FNN Controller for Speed Contort of IPMSM Drive (IPMSM 드라이브의 속도제어를 위한 적응 FNN제어기의 설계)

  • 이정철;이홍균;정동화
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.39-46
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for the speed control of interior permanent magnet synchronous motor(IPMSM) drive. The design of this algorithm based on FNN controller that is implemented by using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights among the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strongly high performance and robustness in parameter variation, steady-state accuracy and transient response.

A Study on Driving Control of an Autonomous Guided Vehicle using Humoral Immune Algorithm Adaptive PID Controller based on Neural Network Identifier Technique (신경회로망 동정기법에 기초한 HIA 적응 PID 제어기를 이용한 AGV의 주행제어에 관한 연구)

  • Lee Young Jin;Suh Jin Ho;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.65-77
    • /
    • 2004
  • In this paper, we propose an adaptive mechanism based on immune algorithm and neural network identifier technique. It is also applied fur an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To solve this problem, we use the neural network identifier (NNI) technique fur modeling the plant and humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using an immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. Finally, the simulation and experimental result fur the control of steering and speed of AGV system illustrate the validity of the proposed control scheme. These results for the proposed method also show that it has better performance than other conventional controller design methods.