• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.038 seconds

A comparative Study of ARIMA and Neural Network Model;Case study in Korea Corporate Bond Yields

  • Kim, Steven H.;Noh, Hyunju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.19-22
    • /
    • 1996
  • A traditional approach to the prediction of economic and financial variables takes the form of statistical models to summarize past observations and to project them into the envisioned future. Over the past decade, an increasing number of organizations has turned to the use of neural networks. To date, however, many spheres of interest still lack a systematic evaluation of the statistical and neural approaches. One of these lies in the prediction of corporate bond yields for Korea. This paper reports on a comparative evaluation of ARIMA models and neural networks in the context of interest rate prediction. An additional experiment relates to an integration of the two methods. More specifically, the statistical model serves as a filter by providing estimtes which are then used as input into the neural network models.

  • PDF

Damage Assessment of RC Bridge Using Neural-Fuzzy System (퍼지신경망을 이용한 철근콘크리트 교량의 손상도 평가)

  • Seong, Young-Joon;Kim, Ki- Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.129-137
    • /
    • 1999
  • Assessment of structural damage is a complex subject imbued with uncertainty and vagueness. This complexity arises from the use of subjective opinion and imprecise numerical data. Recently several active researches have been performed using new methods such as neural network approach or on-line damage detection. In this paper, Damage assessment (diagnosis) of the concrete bridges is studied by a new approach utilizing a neural fuzzy system that combined a neural network and a fuzzy logic. By applying this system to actual in-service bridges, it has been verified that the neural fuzzy method is effective for the bridge diagnosis.

  • PDF

The Structure and Parameter Optimization of the Fuzzy-Neuro Controller (퍼지 신경망 제어기의 구조 및 매개 변수 최적화)

  • Chang, Wook;Kwon, Oh-Kook;Joo, Young-Hoon;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.739-742
    • /
    • 1997
  • This paper proposes the structure and parameter optimization technique of fuzzy neural networks using genetic algorithm. Fuzzy neural network has advantages of both the fuzzy inference system and neural network. The determination of the optimal parameters and structure of the fuzzy neural networks, however, requires special efforts. To solve these problems, we propose a new learning method for optimization of fuzzy neural networks using genetic algorithm. It can optimize the structure and parameters of the entire fuzzy neural network globally. Numerical example is provided to show the advantages of the proposed method.

  • PDF

Hardware Implementation of a Neural Network Controller with an MCU and an FPGA for Nonlinear Systems

  • Kim Sung-Su;Jung Seul
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.567-574
    • /
    • 2006
  • This paper presents the hardware implementation of a neural network controller for a nonlinear system with a micro-controller unit (MCU) and a field programmable gate array (FPGA) chip. As an on-line learning algorithm of a neural network, the reference compensation technique has been implemented on an MCU, while PID controllers with other functions such as counters and PWM generators are implemented on an FPGA chip. Interface between an MCU and a field programmable gate array (FPGA) chip has been developed to complete hardware implementation of a neural controller. The developed neural control hardware has been tested for balancing the inverted pendulum while controlling a desired trajectory of a cart as a nonlinear system.

A Study on Scheduling System for Mold Factory Using Neural Network (신경망을 이용한 금형공장용 일정계획 시스템에 관한 연구)

  • Lee, Hyoung-Kook;Lee, Seok-Hee
    • IE interfaces
    • /
    • v.10 no.3
    • /
    • pp.145-153
    • /
    • 1997
  • This paper deals with constructing a scheduling system for a mold manufacturing factory. The scheduling system is composed of 4 submodules such as pre-processor, neural network training, neural networks and simulation. Pre-processor analyzes the condition of workshop and generates input data to neural networks. Network training module is performed by using the condition of workshop, performance measures, and dispatching rules. Neural networks module presents the most optimized dispatching rule, based on previous training data according to the current condition of workshop. Simulation module predicts the earliest completion date of a mold by forward scheduling with the presented dispatching rules, and suggests a possible issue date of a material by backward tracking. The system developed shows a great potential when applied in real mold factory for automotive parts.

  • PDF

Fuzzy Regression Analysis Using Fuzzy Neural Networks (퍼지 신경망에 의한 퍼지 회귀분석)

  • Kwon, Ki-Taek
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.2
    • /
    • pp.371-383
    • /
    • 1997
  • This paper propose a fuzzy regression method using fuzzy neural networks when a membership value is attached to each input-output pair. First, a method of linear fuzzy regression analysis is described by interpreting the reliability of each input-output pair as its membership values. Next, an architecture of fuzzy neural networks with fuzzy weights and fuzzy biases is shown. The fuzzy neural network maps a crisp input vector to a fuzzy output. A cost function is defined using the fuzzy output from the fuzzy neural network and the corresponding target output with a membership value. A learning algorithm is derived from the cost function. The derived learning algorithm trains the fuzzy neural network so that the level set of the fuzzy output includes the target output. Last, the proposed method is illustrated by computer simulations on numerical examples.

  • PDF

Hybrid position/force control of uncertain robotic systems using neural networks (신경회로망을 이용한 불확실한 로봇 시스템의 하이브리드 위치/힘 제어)

  • Kim, Seong-U;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.252-258
    • /
    • 1997
  • This paper presents neural networks for hybrid position/force control which is a type of position and force control for robot manipulators. The performance of conventional hybrid position/force control is excellent in the case of the exactly-known dynamic model of the robot, but degrades seriously as the uncertainty of the model increases. Hence, the neural network control scheme is presented here to overcome such shortcoming. The introduced neural term is designed to learn the uncertainty of the robot, and to control the robot through uncertainty compensation. Further more, the learning rule of the neural network is derived and is shown to be effective in the sense that it requires neither desired output of the network nor error back propagation through the plant. The proposed scheme is verified through the simulation of hybrid position/force control of a 6-dof robot manipulator.

  • PDF

Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm (인공신경망 이론을 이용한 충주호의 수질예측)

  • 정효준;이소진;이홍근
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

A Study on Induction Motor Speed Control Using Fuzzy-Neural Network (퍼지-뉴럴 제어기를 이용한 유도전동기 속도제어)

  • Kim, Sei-Chan;Kim, Hak-Sung;Ryoo, Hong-Je;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.251-254
    • /
    • 1995
  • The Fuzzy-Neural Controller is constructed to resolve some dificulties taking place in decision of membership functions, input and output gains and an inferenced method for desinging fuzzy logic controller. In addition Neural network emulator is used to emulate induction motor forward dynamics and to get error signal at fuzzy-neural controller output layer. Error signal is backpropagated through neural network emulator. A back propagation algorithm is used to train fuzzy-neural controller and emulator. The experimental results show that this control system can provide good dynamical responses.

  • PDF

The Speed Control of Vector controlled Induction Motor Based on Neural Networks (뉴럴 네트워크 방식의 벡터제어에 의한 유도전동기의 속도 제어)

  • Lee, Dong-Bin;Ryu, Chang-Wan;Hong, Dae-Seung;Yim, Wha-Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.463-471
    • /
    • 1999
  • This paper presents a vector controlled induction motor is implemented by neural networks system compared with PI controller for the speed control. The design employed the training strategy with Neural Network Controller(NNC) and Neural Network Emulator(NNE) for speed. In order to update the weights of the controller First of all Emulator updates its parameters by identifying the motor input and output next it supplies the error path to the output stage of the controller using backpropagation algorithm, As Controller produces an adequate output to the system due to neural networks learning capability Vector controlled induction motor characteristics actual motor speed with based on neural network system follows the reference speed better than that of linear PI speed controller.

  • PDF