• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.037 seconds

Performance Analysis of Artificial Neural Network for Expanding the Ionospheric Correction Coverage of GNSS (위성항법시스템의 전리층 보정 가능 영역 확장을 위한 인공 신경망의 성능 분석)

  • Ryu, Gyeong-don;So, Hyoungmin;Park, Heung-won
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.409-414
    • /
    • 2018
  • Extrapolating the correction information of ionosphere is essential for expanding wide area differential GPS (WADGPS) service area beyond the reference station network. In this paper, design and analysis of the artificial neural network for expanding the ionospheric correction region will be proposed. First, analysis about influence of each input of neural network were performed. The inputs are the day/year periodic function, sunspot number, and geomagnetic index (Ap). Second, performance analysis with respect to the number of hidden layers and neurons in the neural network is shown. As a result, estimation of total electron contents (TEC) on the high/low latitude regions in solar max(2014) are displayed.

CNN-based Gesture Recognition using Motion History Image

  • Koh, Youjin;Kim, Taewon;Hong, Min;Choi, Yoo-Joo
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.67-73
    • /
    • 2020
  • In this paper, we present a CNN-based gesture recognition approach which reduces the memory burden of input data. Most of the neural network-based gesture recognition methods have used a sequence of frame images as input data, which cause a memory burden problem. We use a motion history image in order to define a meaningful gesture. The motion history image is a grayscale image into which the temporal motion information is collapsed by synthesizing silhouette images of a user during the period of one meaningful gesture. In this paper, we first summarize the previous traditional approaches and neural network-based approaches for gesture recognition. Then we explain the data preprocessing procedure for making the motion history image and the neural network architecture with three convolution layers for recognizing the meaningful gestures. In the experiments, we trained five types of gestures, namely those for charging power, shooting left, shooting right, kicking left, and kicking right. The accuracy of gesture recognition was measured by adjusting the number of filters in each layer in the proposed network. We use a grayscale image with 240 × 320 resolution which defines one meaningful gesture and achieved a gesture recognition accuracy of 98.24%.

Effective Hand Gesture Recognition by Key Frame Selection and 3D Neural Network

  • Hoang, Nguyen Ngoc;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • This paper presents an approach for dynamic hand gesture recognition by using algorithm based on 3D Convolutional Neural Network (3D_CNN), which is later extended to 3D Residual Networks (3D_ResNet), and the neural network based key frame selection. Typically, 3D deep neural network is used to classify gestures from the input of image frames, randomly sampled from a video data. In this work, to improve the classification performance, we employ key frames which represent the overall video, as the input of the classification network. The key frames are extracted by SegNet instead of conventional clustering algorithms for video summarization (VSUMM) which require heavy computation. By using a deep neural network, key frame selection can be performed in a real-time system. Experiments are conducted using 3D convolutional kernels such as 3D_CNN, Inflated 3D_CNN (I3D) and 3D_ResNet for gesture classification. Our algorithm achieved up to 97.8% of classification accuracy on the Cambridge gesture dataset. The experimental results show that the proposed approach is efficient and outperforms existing methods.

Neural Network-Based Modeling for Fuel Consumption Prediction of Vehicle (차량 연료 소모량 예측을 위한 신경회로망 기반 모델링)

  • Lee, Min-Goo;Jung, Kyung-Kwon;Yi, Sang-Hoi
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.19-25
    • /
    • 2011
  • This paper presented neural network modeling method using vehicle data to predict fuel consumption. To acquire data for training and testing the proposed neural network, medium-class gasoline vehicle drove at downtown and parameters measured include speed, engine rpm, throttle position sensor (TPS), and mass air flow (MAF) as input data, and fuel consumption as target data from OBD-II port. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the neural network model can predict the vehicle quite well with mean squared error was $1.306{\times}10^{-6}$ for the fuel consumption.

A Study on the Selection of Optimal Neural Network for the Prediction of Top Bead Height (표면 비드높이 예측을 위한 최적의 신경회로망 선정에 관한 연구)

  • Son Joon-Sik;Kim In-Ju;Kim Ill-Soo;Jang Kyeung-Cheun;Lee Dong-Gil
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.66-70
    • /
    • 2005
  • The full automation of welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an neural network model to predict the weld top-bead height as a function of key process parameters in the welding. and to compare the developed model and a simple neural network model using two different training algorithms in order to select an optimal neural network model.

  • PDF

Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

  • Nazemi, E.;Feghhi, S.A.H.;Roshani, G.H.;Gholipour Peyvandi, R.;Setayeshi, S.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas-liquid two-phase flows by using ${\gamma}-ray$ attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam ${\gamma}-ray$ attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly) were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

Adaptive Control Method of Robot Manipulators using a New Neural Network (새로운 신경회로망 구조를 이용한 로봇 매니퓰레이터의 적응 제어 방식)

  • Jung, Kyung-Kwon;Gim, Ine;Lee, Sung-Hyun;Lee, Hyun-Kwan;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.210-213
    • /
    • 1999
  • In this paper, we propose a new neural network for the control of a robot manipulator The proposed neural network structure is that all of network outputs feed bark into hidden units and output units from feedback units The feedback units are only to memorize the previous activations of the hidden units and output units and can be considered to function as one-step time delays. The proposed neural network works standard back-propagation Loaming algorithm. The simulation and experiment results showed the effectiveness of using the modified neural network structure in the control of the robot manipulator.

  • PDF

Nonlinear Prediction using Gamma Multilayered Neural Network (Gamma 다층 신경망을 이용한 비선형 적응예측)

  • Kim Jong-In;Go Il-Hwan;Choi Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2006
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing such as system identification and signal prediction. This paper proposes the gamma neural network(GAM), which uses gamma memory kernel in the hidden layer of feedforward multilayered network, to improve dynamics of networks and then describes nonlinear adaptive prediction using the proposed network as an adaptive filter. The proposed network is evaluated in nonlinear signal prediction and compared with feedforword(FNN) and recurrent neural networks(RNN) for the relative comparison of prediction performance. Simulation results show that the GAM network performs better with respect to the convergence speed and prediction accuracy, indicating that it can be a more effective prediction model than conventional multilayered networks in nonlinear prediction for nonstationary signals.

  • PDF

Single-channel Demodulation Algorithm for Non-cooperative PCMA Signals Based on Neural Network

  • Wei, Chi;Peng, Hua;Fan, Junhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3433-3446
    • /
    • 2019
  • Aiming at the high complexity of traditional single-channel demodulation algorithm for PCMA signals, a new demodulation algorithm based on neural network is proposed to reduce the complexity of demodulation in the system of non-cooperative PCMA communication. The demodulation network is trained in this paper, which combines the preprocessing module and decision module. Firstly, the preprocessing module is used to estimate the initial parameters, and the auxiliary signals are obtained by using the information of frequency offset estimation. Then, the time-frequency characteristic data of auxiliary signals are obtained, which is taken as the input data of the neural network to be trained. Finally, the decision module is used to output the demodulated bit sequence. Compared with traditional single-channel demodulation algorithms, the proposed algorithm does not need to go through all the possible values of transmit symbol pairs, which greatly reduces the complexity of demodulation. The simulation results show that the trained neural network can greatly extract the time-frequency characteristics of PCMA signals. The performance of the proposed algorithm is similar to that of PSP algorithm, but the complexity of demodulation can be greatly reduced through the proposed algorithm.

Pixel level prediction of dynamic pressure distribution on hull surface based on convolutional neural network (합성곱 신경망 기반 선체 표면 압력 분포의 픽셀 수준 예측)

  • Kim, Dayeon;Seo, Jeongbeom;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • In these days, the rapid development in prediction technology using artificial intelligent is being applied in a variety of engineering fields. Especially, dimensionality reduction technologies such as autoencoder and convolutional neural network have enabled the classification and regression of high-dimensional data. In particular, pixel level prediction technology enables semantic segmentation (fine-grained classification), or physical value prediction for each pixel such as depth or surface normal estimation. In this study, the pressure distribution of the ship's surface was estimated at the pixel level based on the artificial neural network. First, a potential flow analysis was performed on the hull form data generated by transforming the baseline hull form data to construct 429 datasets for learning. Thereafter, a neural network with a U-shape structure was configured to learn the pressure value at the node position of the pretreated hull form. As a result, for the hull form included in training set, it was confirmed that the neural network can make a good prediction for pressure distribution. But in case of container ship, which is not included and have different characteristics, the network couldn't give a reasonable result.