• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.041 seconds

Implementation of the Classification using Neural Network in Diagnosis of Liver Cirrhosis (간 경변 진단시 신경망을 이용한 분류기 구현)

  • Park, Byung-Rae
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.17-33
    • /
    • 2005
  • This paper presents the proposed a classifier of liver cirrhotic step using MR(magnetic resonance) imaging and hierarchical neural network. The data sets for classification of each stage, which were normal, 1type, 2type and 3type, were analysis in the number of data was 231. We extracted liver region and nodule region from T1-weight MR liver image. Then objective interpretation classifier of liver cirrhotic steps. Liver cirrhosis classifier implemented using hierarchical neural network which gray-level analysis and texture feature descriptors to distinguish normal liver and 3 types of liver cirrhosis. Then proposed Neural network classifier learned through error back-propagation algorithm. A classifying result shows that recognition rate of normal is $100\%$, 1type is $82.8\%$, 2type is $87.1\%$, 3type is $84.2\%$. The recognition ratio very high, when compared between the result of obtained quantified data to that of doctors decision data and neural network classifier value. If enough data is offered and other parameter is considered this paper according to we expected that neural network as well as human experts and could be useful as clinical decision support tool for liver cirrhosis patients.

  • PDF

A Safety Score Prediction Model in Urban Environment Using Convolutional Neural Network (컨볼루션 신경망을 이용한 도시 환경에서의 안전도 점수 예측 모델 연구)

  • Kang, Hyeon-Woo;Kang, Hang-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.8
    • /
    • pp.393-400
    • /
    • 2016
  • Recently, there have been various researches on efficient and automatic analysis on urban environment methods that utilize the computer vision and machine learning technology. Among many new analyses, urban safety analysis has received a major attention. In order to predict more accurately on safety score and reflect the human visual perception, it is necessary to consider the generic and local information that are most important to human perception. In this paper, we use Double-column Convolutional Neural network consisting of generic and local columns for the prediction of urban safety. The input of generic and local column used re-sized and random cropped images from original images, respectively. In addition, a new learning method is proposed to solve the problem of over-fitting in a particular column in the learning process. For the performance comparison of our Double-column Convolutional Neural Network, we compare two Support Vector Regression and three Convolutional Neural Network models using Root Mean Square Error and correlation analysis. Our experimental results demonstrate that our Double-column Convolutional Neural Network model show the best performance with Root Mean Square Error of 0.7432 and Pearson/Spearman correlation coefficient of 0.853/0.840.

Damage Assessment of Plate Gider Railway Bridge Based on the Probabilistic Neural Network (확률신경망을 이용한 철도 판형교의 손상평가)

  • 조효남;이성칠;강경구;오달수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.229-236
    • /
    • 2003
  • Artificial neural network has been used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems associated with the conventional artificial neural network, especially the Back Propagation Neural Network(BPNN), are on the need of many training patterns and on the ambiguous relationship between neural network architecture and the convergence of solution. Therefore, the number of hidden layers and nodes in one hidden layer would be determined by trial and error. Also, it takes a lot of time to prepare many training patterns and to determine the optimum architecture of neural network. To overcome these drawbacks, the PNN can be used as a pattern classifier. In this paper, the PNN is used numerically to detect damage in a plate girder railway bridge. Also, the comparison between mode shapes and natural frequencies of the structure is investigated to select the appropriate training pattern for the damage detection in the railway bridge.

Face Detection Algorithm Using Pulse-Coupled Neural Network in Color Images (컬러영상에서 Pulse-Coupled Neural Network를 이용한 얼굴 추출 알고리즘)

  • Lim, Young-Wan;Na, Jin-Hee;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.617-622
    • /
    • 2004
  • In this work, we suggested the method which improves the efficiency of the face detection algorithm using Pulse-Coupled Neural Network. Face detection algorithm which uses the color information is independent on pose, size and obstruction of a face. But the use of color information encounters some problems arising from skin-tone color in the background, intensity variation within faces, and presence of random noise, and so on. Depending on these conditions, we obtained the mean and variance of the skin-tone colors by experiments. Then we introduce a preprocess that the pixel with a mean value of skin-tone colors has highest level value (255) and the other pixels in the skin-tone region have values between 0 and 255 according to a normal distribution with a variance. This preprocess leads to an easy decision of the linking coefficient of Pulse-Coupled Neural Network.

STPI Controller of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 STPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.2 s.314
    • /
    • pp.24-31
    • /
    • 2007
  • This paper presents self tuning PI(STPI) controller of IPMSM drive using neural network. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, STPI controller proposes a new method based neural network. STPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Performance Enhancement of Phoneme and Emotion Recognition by Multi-task Training of Common Neural Network (공용 신경망의 다중 학습을 통한 음소와 감정 인식의 성능 향상)

  • Kim, Jaewon;Park, Hochong
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.742-749
    • /
    • 2020
  • This paper proposes a method for recognizing both phoneme and emotion using a common neural network and a multi-task training method for the common neural network. The common neural network performs the same function for both recognition tasks, which corresponds to the structure of multi-information recognition of human using a single auditory system. The multi-task training conducts a feature modeling that is commonly applicable to multiple information and provides generalized training, which enables to improve the performance by reducing an overfitting occurred in the conventional individual training for each information. A method for increasing phoneme recognition performance is also proposed that applies weight to the phoneme in the multi-task training. When using the same feature vector and neural network, it is confirmed that the proposed common neural network with multi-task training provides higher performance than the individual one trained for each task.

A Neural Network-based Artificial Intelligence Algorithm with Movement for the Game NPC (게임 NPC를 위한 신경망 기반의 이동 안공지능 알고리즘)

  • Joe, In-Whee;Choi, Moon-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1181-1187
    • /
    • 2010
  • This paper proposes a mobile AI (Artificial Intelligence) conducting decision-making in the game through education for intelligent character on the basis of Neural Network. Neural Network is learned through the input/output value of the algorithm which defines the game rule and the problem solving method. The learned character is able to perceive the circumstances and make proper action. In this paper, the mobile AI using Neural Network has been step-by-step designed, and a simple game has been materialized for its functional experiment. In this game, the goal, the character, and obstacles exist on regular 2D space, and the character, evading obstacles, has to move where the goal is. The mobile AI can achieve its goals in changing environment by learning the solution to several problems through the algorithm defined in each experiment. The defined algorithm and Neural Network are designed to make the input/output system the same. As the experimental results, the suggested mobile AI showed that it could perceive the circumstances to conduct action and to complete its mission. If mobile AI learns the defined algorithm even in the game of complex structure, its Neural Network will be able to show proper results even in the changing environment.

A study on the Response Characteristics of Fuzzy Controller & Fuzzy Neural Network Controller (퍼지 제어기와 퍼지 신경망제어기의 응답 특성에 관한 연구)

  • Kim, Hyeong-Su;Lee, Sang-Bu;Kim, Heung-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1473-1482
    • /
    • 1996
  • This study examines the response characteristics of the fuzzy controller and the fuzzy neural network controller. The former is excellent in terms of the overshoot at its values and has great advantages on the disturbance. But there exist some errors in its desired output. Many methods have been introduced that remove the errors of the desired state. This study is in more favor of the fuzzy neural network controller using the neural network than any other method. The fuzzy neural network controller complements the shortcomings of fuzzy controller and can be an accurate controller by being well-without any disturbance or error-converged to the desired output. And it is through simulation that the comparison of the two controllers is carried out in this study.

  • PDF

An Artificial Neural Network Learning Fuzzy Membership Functions for Extracting Color Sketch Features (칼라스케치 특징점 추출을 위한 퍼지 멤버쉽 함수의 신경회로망 학습)

  • Cho, Sung-Mok;Cho, Ok-Lae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.11-20
    • /
    • 2006
  • This paper describes the technique which utilizes a fuzzy neural network to sketch feature extraction in digital images. We configure an artificial neural network and make it learn fuzzy membership functions to decide a local threshold applying to sketch feature extraction. To do this. we put the learning data which is membership functions generated based on optimal feature map of a few standard images into the artificial neural network. The proposed technique extracts sketch features in an images very effectively and rapidly because the input fuzzy variable have some desirable characteristics for feature extraction such as dependency of local intensity and excellent performance and the proposed fuzzy neural network is learned from their membership functions, We show that the fuzzy neural network has a good performance in extracting sketch features without human intervention.

  • PDF

BLE-based Indoor Positioning System design using Neural Network (신경망을 이용한 BLE 기반 실내 측위 시스템 설계)

  • Shin, Kwang-Seong;Lee, Heekwon;Youm, Sungkwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.75-80
    • /
    • 2021
  • Positioning technology is performing important functions in augmented reality, smart factory, and autonomous driving. Among the positioning techniques, the positioning method using beacons has been considered a challenging task due to the deviation of the RSSI value. In this study, the position of a moving object is predicted by training a neural network that takes the RSSI value of the receiver as an input and the distance as the target value. To do this, the measured distance versus RSSI was collected. A neural network was introduced to create synthetic data from the collected actual data. Based on this neural network, the RSSI value versus distance was predicted. The real value of RSSI was obtained as a neural network for generating synthetic data, and based on this value, the coordinates of the object were estimated by learning a neural network that tracks the location of a terminal in a virtual environment.