• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.033 seconds

Fault Diagnosis Method of Complex System by Hierarchical Structure Approach (계층구조 접근에 의한 복합시스템 고장진단 기법)

  • Bae, Yong-Hwan;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.135-146
    • /
    • 1997
  • This paper describes fault diagnosis method in complex system with hierachical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. Fault diagnosis system can forecast faults in a system and decide from current machine state signal information. Comparing with other diagnosis system for single fault, the developed system deals with multiple fault diagnosis comprising Hierarchical Neural Network(HNN). HNN consists of four level neural network, first level for item fault symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. UNIX IPC(Inter Process Communication) is used for implementing HNN wiht multitasking and message transfer between processes in SUN workstation with X-Windows(Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural newtork operate as a separate process in HNN. The message queue take charge of information exdhange and cooperation between each neural network.

  • PDF

Evaluation of Bearing Capacity on PHC Auger-Drilled Piles Using Artificial Neural Network (인공신경망을 이용한 PHC 매입말뚝의 지지력 평가)

  • Lee, Song;Jang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.213-223
    • /
    • 2006
  • In this study, artificial neural network is applied to the evaluation of bearing capacity of the PHC auger-drilled piles at sites of domestic decomposed granite soils. For the verification of applicability of error back propagation neural network, a total of 168 data of in-situ test results for PHC auger-drilled plies are used. The results show that the estimation of error back propagation neural network provide a good matching with pile test results by training and these results show the confidence of utilizing the neural networks for evaluation of the bearing capacity of piles.

End-to-end-based Wi-Fi RTT network structure design for positioning stabilization (측위 안정화를 위한 End to End 기반의 Wi-Fi RTT 네트워크 구조 설계)

  • Seong, Ju-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.676-683
    • /
    • 2021
  • Wi-Fi Round-trip timing (RTT) based location estimation technology estimates the distance between the user and the AP based on the transmission and reception time of the signal. This is because reception instability and signal distortion are greater than that of a Received Signal Strength Indicator (RSSI) based fingerprint in an indoor NLOS environment, resulting in a large position error due to multipath fading. To solve this problem, in this paper, we propose an end-to-end based WiFi Trilateration Net (WTN) that combines neural network-based RTT correction and trilateral positioning network, respectively. The proposed WTN is composed of an RNN-based correction network to improve the RTT distance accuracy and a neural network-based trilateral positioning network for real-time positioning implemented in an end-to-end structure. The proposed network improves learning efficiency by changing the trilateral positioning algorithm, which cannot be learned through differentiation due to mathematical operations, to a neural network. In addition, in order to increase the stability of the TOA based RTT, a correction network is applied in the scanning step to collect reliable distance estimation values from each RTT AP.

Predicting strength development of RMSM using ultrasonic pulse velocity and artificial neural network

  • Sheen, Nain Y.;Huang, Jeng L.;Le, Hien D.
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.785-802
    • /
    • 2013
  • Ready-mixed soil material, known as a kind of controlled low-strength material, is a new way of soil cement combination. It can be used as backfill materials. In this paper, artificial neural network and nonlinear regression approach were applied to predict the compressive strength of ready-mixed soil material containing Portland cement, slag, sand, and soil in mixture. The data used for analyzing were obtained from our testing program. In the experiment, we carried out a mix design with three proportions of sand to soil (e.g., 6:4, 5:5, and 4:6). In addition, blast furnace slag partially replaced cement to improve workability, whereas the water-to-binder ratio was fixed. Testing was conducted on samples to estimate its engineering properties as per ASTM such as flowability, strength, and pulse velocity. Based on testing data, the empirical pulse velocity-strength correlation was established by regression method. Next, three topologies of neural network were developed to predict the strength, namely ANN-I, ANN-II, and ANN-III. The first two models are back-propagation feed-forward networks, and the other one is radial basis neural network. The results show that the compressive strength of ready-mixed soil material can be well-predicted from neural networks. Among all currently proposed neural network models, the ANN-I gives the best prediction because it is closest to the actual strength. Moreover, considering combination of pulse velocity and other factors, viz. curing time, and material contents in mixture, the proposed neural networks offer better evaluation than interpolated from pulse velocity only.

Modular Neural Network Recognition System for Robot Endeffector Recognition (로봇 Endeffector 인식을 위한 다중 모듈 신경회로망 인식 시스템)

  • 신진욱;박동선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.618-626
    • /
    • 2004
  • In this paper, we describe a robot endeffector recognition system based on a Modular Neural Networks (MNN). The proposed recognition system can be used for vision system which track a given object using a sequence of images from a camera unit. The main objective to achieve with the designed MNN is to precisely recognize the given robot endeffector and to minimize the processing time. Since the robot endeffector can be viewed in many different shapes in 3- D space, a MNN structure, which contains a set of feedforwared neural networks, can be more attractive in recognizing the given object. Each single neural network learns the endeffector with a cluster of training patterns. The training MNN patterns for a neural network share the similar characteristics so that they can be easily trained. The trained UM is les s sensitive to noise and it shows the better performance in recognizing the endeffector. The recognition rate of MNN is enhanced by 14% over the single neural network. A vision system with the MNN can precisely recognize the endeffector and place it at the center of a display for a remote operator.

A Speed Control of Switched Reluctance Motor using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 스위치드 리럭턴스 전동기의 속도제어)

  • 박지호;김연충;원충연;김창림;최경호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.109-119
    • /
    • 1999
  • Switched Reluctance Motor(SRM) have been expanding gradually their awlications in the variable speed drives due to their relatively low cost, simple and robust structure, controllability and high efficiency. In this paper neural network theory is used to detemrine fuzzy-neural network controller's membership ftmctions and fuzzy rules. In addition neural network emulator is used to emulate forward dynamics of SRM and to get error signal at fuzzy-neural controller output layer. Error signal is backpropagated through neural network emulator. The backpropagated error of emulator offers the path which reforms the fuzzy-neural network controller's mmbership ftmctions and fuzzy rules. 32bit Digital Signal Processor(TMS320C31) was used to achieve the high speed control and to realize the fuzzy-neural control algorithm. Simulation and experimental results show that in the case of load variation the proposed control rrethcd was superior to a conventional rrethod in the respect of speed response.sponse.

  • PDF

A study on the new hybrid recurrent TDNN-HMM architecture for speech recognition (음성인식을 위한 새로운 혼성 recurrent TDNN-HMM 구조에 관한 연구)

  • Jang, Chun-Seo
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.699-704
    • /
    • 2001
  • ABSTRACT In this paper, a new hybrid modular recurrent TDNN (time-delay neural network)-HMM (hidden Markov model) architecture for speech recognition has been studied. In TDNN, the recognition rate could be increased if the signal window is extended. To obtain this effect in the neural network, a high-level memory generated through a feedback within the first hidden layer of the neural network unit has been used. To increase the ability to deal with the temporal structure of phonemic features, the input layer of the network has been divided into multiple states in time sequence and has feature detector for each states. To expand the network from small recognition task to the full speech recognition system, modular construction method has been also used. Furthermore, the neural network and HMM are integrated by feeding output vectors from the neural network to HMM, and a new parameter smoothing method which can be applied to this hybrid system has been suggested.

  • PDF

A Shortest Path Routing Algorithm using a Modified Hopfield Neural Network (수정된 홉필드 신경망을 이용한 최단 경로 라우팅 알고리즘)

  • Ahn, Chang-Wook;Ramakrishna, R.S.;Choi, In-Chan;Kang, Chung-Gu
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.386-396
    • /
    • 2002
  • This paper presents a neural network-based near-optimal routing algorithm. It employs a modified Hopfield Neural Network (MHNN) as a means to solve the shortest path problem. It uses every piece of information that is available at the peripheral neurons in addition to the highly correlated information that is available at the local neuron. Consequently, every neuron converges speedily and optimally to a stable state. The convergence is faster than what is usually found in algorithms that employ conventional Hopfield neural networks. Computer simulations support the indicated claims. The results are relatively independent of network topology for almost all source-destination pairs, which nay be useful for implementing the routing algorithms appropriate to multi -hop packet radio networks with time-varying network topology.

A Study on the Nonlinear Modeling of Lead Rubber Bearings by a Neural Network Theory (신경망 이론을 적용한 납삽입 적층 고무베어링의 비선형 모델링 기법에 관한 연구)

  • Huh, Young-Cheol;Kim, Young-Joong;Kim, Byung-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.63-69
    • /
    • 2004
  • In this paper, a nonlinear modeling of lead rubber bearings(LRBs) was presented by a neural network theory. An shaking table test for a scaled frame model, of which base was isolated by the LRBs, was performed to verify numerical accuracies of the neural network model. White noise and three types of seismic records were adoped as base loads of the shaking table in order to train and generalize the neural network in case of seismic loads, numerical results of the neural network model were evaluated according to different magnitudes of PGA. As results, it is concluded that the presented neural network model has given a good agreement with the experimental data in details and can be useful to a nonlinear modeling of LRBs within prescribed domains.

High Performance Speed Control of IPMSM with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM의 고성능 속도제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • Precise control of interior permanent magnet synchronous motor(IPMSM) over wide speed range is an engineering challenge. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using learning mechanism-fuzzy neural network(LM-FNN) and ANN(artificial neural network) control. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility md numerical processing capability. Also, this paper proposes speed control of IPMSM using LM-FNN and estimation of speed using artificial neural network controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. 'The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Analysis results to verify the effectiveness of the new hybrid intelligent control proposed in this paper.