• 제목/요약/키워드: neural network.

Search Result 11,766, Processing Time 0.041 seconds

Inspection of Automotive Oil-Seals Using Artificial Neural Network and Vision System (인공신경망과 비전 시스템을 이용한 자동차용 오일씰의 검사)

  • 노병국;김기대
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.83-88
    • /
    • 2004
  • The Classification of defected oil-seals using a vision system with the artificial neural network is presented. The artificial neural network fur classification consists of 27 input nodes, 10 hidden nodes, and one output node. The selection of the number of the input nodes is based on an observation that the difference among the defected, non-defected, and smeared oil-seals is greatly pronounced in the 26 step gray-scale level thresholding. The number of the hidden nodes is chosen as a result of a trade-off between accuracy and computing time. The back-propagation algorithm is used for teaching the network. The proposed network is capable of successfully classifying the defected from the smeared oil-seals which tend to be classified as the defected ones using the binary thresholding. It is envisaged that the proposed method improves the reliability and productivity of the automotive vision inspection system.

Applicaion of Neural Network for Machine Condition Monitoring and Fault Diagnosis (기계구동계의 손상상태 모니터링을 위한 신경회로망의 적용)

  • 박흥식;서영백;조연상
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.74-80
    • /
    • 1998
  • The morphologies of the wear particles are directly indicative of wear process occuring in the machine. The analysis of wear particle morphology can therefore provide very early detection of a fault and can also ofen facilitate a dignosis. For this work, the neural network was applied to identify friction coefficient through four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) of wear debris generated from the machine. The averages of these parameters were used as inputs to the network. It is shown that collect identification of friction coefficient depends on the ranges of these shape parameters learned. The various kinds of the wear debris had a different pattern characteristics and recognized relation between the friction condition and materials very well by neural network. We discuss how the network determines difference in wear debris feature, and this approach can be applied for machine condition monitoring and fault diagnosis.

Stable Wavelet Based Fuzzy Neural Network for the Identification of Nonlinear Systems (비선형 시스템의 동정을 위한 안정한 웨이블릿 기반 퍼지 뉴럴 네트워크)

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2681-2683
    • /
    • 2005
  • In this paper, we present the structure of fuzzy neural network(FNN) based on wavelet function, and apply this network structure to the identification of nonlinear systems. For adjusting the shape of membership function and the connection weights, the parameter learning method based on the gradient descent scheme is adopted. And an approach that uses adaptive learning rates is driven via a Lyapunov stability analysis to guarantee the fast convergence. Finally, to verify the efficiency of our network structure. we compare the Identification performance of proposed wavelet based fuzzy neural network(WFNN) with those of the FNN, the wavelet fuzzy model(WFM) and the wavelet neural network(WNN) through the computer simulation.

  • PDF

Identification of Friction Condition with Neural Network (신경회로망에 의한 마찰상태의 식별)

  • 조연상;서영백;박흥식;전태옥
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.83-90
    • /
    • 1998
  • The morphologies of the wear debris are directly indicative of wear processes occuring in machinery and their severity. The neural network was applied to identify friction condition from the lubricated moving system. The four parameter(50% volumetric diameter, aspect, roundness and reflectivity) of wear debris are used as inputs to the network and learned the friction coefficient. It is shown that identification results depend on the ranges of these shape parameter learned. The three kinds of the wear debris had a different pattern characteristic and recognized the friction condition and materials very well by neural network. We dicuss between the characteristic of wear debris and the friction coefficient and how the network determines difference in wear debris feature.

  • PDF

Artificial Neural Network Models in Prediction of the Moisture Content of a Spray Drying Process

  • Taylan, Osman;Haydar, Ali
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.353-358
    • /
    • 2004
  • Spray drying is a unique drying process for powder production. Spray dried product must be free-flowing in order to fill the pressing dies rapidly, especially in the ceramic production. The important powder characteristics are; the particle size distribu-tion and moisture content of the finished product that can be estimated and adjusted by the spray dryer operation, within limits, through regulation of atomizer and drying conditions. In order to estimate the moisture content of the resultant dried product, we modeled the control system of the drying process using two different Artificial Neural Network (ANN) approaches, namely the Back-Propagation Multiplayer Perceptron (BPMLP) algorithm and the Radial Basis Function (RBF) network. It was found out that the performance of both of the artificial neural network models were quite significant and the total testing error for the 100 data was 0.8 and 0.7 for the BPMLP algorithm and the RBF network respectively.

On-line Training of Neural Network for Monitoring Plant Transients

  • Varde, P.V.;Moon, B.S.;Han, J.B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.129-133
    • /
    • 2003
  • The work described in this paper deals with the proposed application of an Artificial Neural Network Model for the Advanced Pressurized Water Reactor APR-1400 transient identification. The approach adopted for testing the network take note of the expectation which should be fulfilled by a network for real-time application, like testing with data in on-line mode and use of actual or real-life patterns for training. The recall test performed demonstrates that use of neural network for transient identification is indeed an attractive preposition.

  • PDF

Personalized Agent Modeling by Modified Spreading Neural Network

  • Cho, Young-Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.215-221
    • /
    • 2003
  • Generally, we want to be searched the newest as well as some appropriate personalized information from the internet resources. However, it is a complex and repeated procedure to search some appropriate information. Moreover, because the user's interests are changed as time goes, the real time modeling of a user's interests should be necessary. In this paper, I propose PREA system that can search and filter documents that users are interested from the World Wide Web. And then it constructs the user's interest model by a modified spreading neural network. Based on this network, PREA can easily produce some queries to search web documents, and it ranks them. The conventional spreading neural network does not have a visualization function, so that the users could not know how to be configured his or her interest model by the network. To solve this problem, PREA gives a visualization function being shown how to be made his interest user model to many users.

Forceseeability and Decision for Moving Condition of the Machine Driving System by Artificial Neural Network (인공신경망에 의한 기계구동계의 작동상태 예지 및 판정)

  • Park, H. S.;Seo, Y. B.;Lee, C. Y.;Cho, Y. S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.92-97
    • /
    • 1998
  • The morpholgies of the wear particles are directly indicative of wear processes occuring in machinery and their severity. The neural network was applied to identify wear debris generated from the machine driving system. The four parameters(50% volumetric diameter, aspect, roundness and reflectivity) of wear debris are used as inputs to the network and learned the friction condition of five values(material 3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameters learned. The three kinds of the wear debris had a different patter characteristic and recognized the friction condition and materials very well by artificial neural network. We discussed how the network determines differencee in wear debris feature, and this approach can be applied to foreseeability and decisio for moving condition of the Machine driving system.

  • PDF

Deep Neural Network-based Jellyfish Distribution Recognition System Using a UAV (무인기를 이용한 심층 신경망 기반 해파리 분포 인식 시스템)

  • Koo, Jungmo;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.432-440
    • /
    • 2017
  • In this paper, we propose a jellyfish distribution recognition and monitoring system using a UAV (unmanned aerial vehicle). The UAV was designed to satisfy the requirements for flight in ocean environment. The target jellyfish, Aurelia aurita, is recognized through convolutional neural network and its distribution is calculated. The modified deep neural network architecture has been developed to have reliable recognition accuracy and fast operation speed. Recognition speed is about 400 times faster than GoogLeNet by using a lightweight network architecture. We also introduce the method for selecting candidates to be used as inputs to the proposed network. The recognition accuracy of the jellyfish is improved by removing the probability value of the meaningless class among the probability vectors of the evaluated input image and re-evaluating it by normalization. The jellyfish distribution is calculated based on the unit jellyfish image recognized. The distribution level is defined by using the novelty concept of the distribution map buffer.

A Study on the Flexible Disk Grinding Process Parameter Prediction Using Neural Network (신경망을 이용한 유연성 디스크 연삭가공공정 인자 예측에 관한 연구)

  • Yoo, Song-Min
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.123-130
    • /
    • 2008
  • In order to clarify detailed mechanism of the flexible disk grinding system, workpiece length was introduced and its performance was evaluated. Flat zone ratio increased as the workpiece length increased. Increasing wheel speed and depth of cut also enhanced process performance by producing larger flat zone ratio. Neural network system was successfully applied to predict minimum depth of engagement and flat zone ratio. An additional input parameter as workpiece length to the neural network system enhanced the prediction performance by reducing error rate. By rearranging the Input combinations to the network, the workpiece length was precisely predicted with the prediction error rate lower than 2.8% depending on the network structure.