This is an expository article about the gradients in deep neural network. It is hard to find a place where gradients in a deep neural network are dealt in details in a systematic and mathematical way. We review and compute the gradients and Jacobians to derive formulas for gradients which appear in the backpropagation and implement them in vectorized forms in Python.
Park, Sang-Moo;Kim, Seong-Jin;Lee, Dong-Hyung;Lee, Soo-Dong;Ock, Cheol-Young
Journal of the Korea Society of Computer and Information
/
v.16
no.1
/
pp.31-38
/
2011
A RAM-based Neural Net is a weightless neural network based on binary neural network. 3-D neural network using this paper is binary neural network with multiful information bits and store counts of training. Recognition method by MRD technique is based on the supervised learning. Therefore neural network by itself can not distinguish between the categories and well-separated categories of training data can achieve only through the performance. In this paper, unsupervised learning algorithm is proposed which is trained existing 3-D neural network without distinction of data, to distinguish between categories depending on the only input training patterns. The training data for proposed unsupervised learning provided by the NIST handwritten digits of MNIST which is consist of 0 to 9 multi-pattern, a randomly materials are used as training patterns. Through experiments, neural network is to determine the number of discriminator which each have an idea of the handwritten digits that can be interpreted.
Journal of the Society of Naval Architects of Korea
/
v.34
no.3
/
pp.19-26
/
1997
This paper is concerned with the design of neural-network based autopilot control system. The back-propagation neural network introduced in the previous paper by authors is applied to the autopilot control system. As a result, two neural-network controllers are developed, which are the model reference adaptive neural controller and the instantaneous optimal neural controller. The model reference adaptive neural controller is the control technique that the heading angle and angular velocity are controlled by the rudder angle to follow the output of the reference model. The instantaneous optimal neural controller optimizes the transition from one state to the next state. These control techniques are applied to a simple ship maneuvering model and their effectiveness is proved by numerical examples.
Journal of the Korean Society of Industry Convergence
/
v.27
no.1
/
pp.151-160
/
2024
Artificial Neural Networks that enabled Artificial Intelligence are being used in many fields. However, the application to mechanical structures has several problems and research is incomplete. One of the problems is that it is difficult to secure a large amount of data necessary for learning Artificial Neural Networks. In particular, it is important to detect and recognize external forces and forces for safety working and accident prevention of mechanical structures. This study examined the possibility by applying the Current Neural Network of Artificial Neural Networks to detect and recognize the load on the machine. Tens of thousands of data are required for general learning of Recurrent Neural Networks, and to secure large amounts of data, this paper derives load data from ANSYS structural analysis results and applies a stacked auto-encoder technique to secure the amount of data that can be learned. The usefulness of Stacked Auto-Encoder data was examined by comparing Stacked Auto-Encoder data and ANSYS data. In addition, in order to improve the accuracy of detection and recognition of load data with a Recurrent Neural Network, the optimal conditions are proposed by investigating the effects of related functions.
In this paper, we investigates a reliable model of the Predictive Recurrent Neural Network for the speech recognition. Predictive Neural Networks are modeled by syllable units. For the given input syllable, then a model which gives the minimum prediction error is taken as the recognition result. The Predictive Neural Network which has the structure of recurrent network was composed to give the dynamic feature of the speech pattern into the network. We have compared with the recognition ability of the Recurrent Network proposed by Elman and Jordan. ETRI's SAMDORI has been used for the speech DB. In order to find a reliable model of neural networks, the changes of two recognition rates were compared one another in conditions of: (1) changing prediction order and the number of hidden units: and (2) accumulating previous values with self-loop coefficient in its context. The result shows that the optimum prediction order, the number of hidden units, and self-loop coefficient have differently responded according to the structure of neural network used. However, in general, the Jordan's recurrent network shows relatively higher recognition rate than Elman's. The effects of recognition rate on the self-loop coefficient were variable according to the structures of neural network and their values.
The purpose of this paper is to generate a pitch contour which is affected by tile phonetic environment and the number of syllables in each Korean isolated word using a neural network. To do this, we analyzed a set of 513 Korean isolated words, consisting of 1-4 syllables and extracted the pitch contour and the duration of each phoneme in all the words. The total number of phonemes we analyzed is about 3800. After that we approximated the pitch contour with a 1st order polynominal by a regression analysis. We could get the slope, the initial pitch and the duration of each phoneme. We used these 3 parameters as the target pattern of the neural network and let the neural network learn the rule of the variation of the pitch and duration, which was affected by the phonetic environment of each phoneme. We used 7 consecutive phoneme strings as an input pattern for a neural network to make the network learn the effect of phonetic environment around the center phoneme. In the learning phase, we used 3545 items(463 words) as target patterns which contained the phonetic environment of front and rear 3 phonemes and the neural network showed the correctness rate of 98.43%, 98.59%, 97.7% in the estimation of the duration, the slope, the initial pitch. In the recall phase, we tested the performance of tile neural network with 251 items(50 words) which weren't need as learning data and we could get the good correctness rate of 97.34%, 95.45%, 96.3% in the generation of the duration, the slope, and the initial pitch of each phoneme.
Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.227-230
/
2002
The Loose Part Monitoring System(LPMS) has been designed to detect, locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal, Rising time, Half period, and Global time, they are used as the inputs to neural network. Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising Time, Half Period, Maximum amplitude. The result showed that the neural network would be applied to LPMS. Also, applying the neural network to the Practical false alarm data during startup and impact test signal at nuclear power Plant, the false alarms are reduced effectively. 1.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.4
/
pp.354-358
/
2001
This paper presents a fuzzy neural network model which solves the underutilization problem. This fuzzy neural network has both stability and flexibility because it uses the control structure similar to AHT(Adaptive Resonance Theory)-l neural network. And this fuzzy nenral network does not need to initialize weights and is less sensitive to noise than ART-l neural network is. The learning rule of this fuzzy neural network is the modified and fuzzified version of Kohonen learning rule and is based on the fuzzification of leaky competitive leaming and the fuzzification of conditional probability. The similarity measure of vigilance test, which is performed after selecting a winner among output neurons, is the relative distance. This relative distance considers Euclidean distance and the relative location between a datum and the prototypes of clusters. To compare the performance of the proposed fuzzy neural network with that of Kohonen Self-Organizing Feature Map the IRIS data and Gaussian-distributed data are used.
In this paper, genetic algorithm (GA) is implemented to search for the optimal structures (i.e. the kind of neural networks, the number of inputs and hidden neurons) of neural networks which are used approximating a given nonlinear function. Two kinds of neural networks, i.e. the multilayer feedforward [1] and time delay neural networks (TDNN) [2] are involved in this paper. The synapse weights of each neural network in each generation are obtained by associated training algorithms. The simulation results of nonlinear function approximation are given out and some improvements in the future are outlined.
Park Sang-Wook;Heo Min-Suk;Lee Sam-Sun;Choi Soon-Chul;Park Tae-Won;You Dong-Soo
Journal of Korean Academy of Oral and Maxillofacial Radiology
/
v.29
no.1
/
pp.149-159
/
1999
Purpose: The purpose of this study was to evaluate cervical lymph node metastasis of oral squamous cell carcinoma patients by MRI film and neural network system. Materials and Methods: The oral squamous cell carcinoma patients(21 patients. 59 lymph nodes) who have visited SNU hospital and been taken by MRI. were included in this study. Neck dissection operations were done and all of the cervical lymph nodes were confirmed with biopsy. In MR images. each lymph node were evaluated by using 6 MR imaging criteria(size. roundness. heterogeneity. rim enhancement. central necrosis, grouping) respectively. Positive predictive value. negative predictive value. and accuracy of each MR imaging criteria were calculated. At neural network system. the layers of neural network system consisted of 10 input layer units. 10 hidden layer units and 1 output layer unit. 6 MR imaging criteria previously described and 4 MR imaging criteria (site I-node level II and submandibular area. site II-other node level. shape I-oval. shape II-bean) were included for input layer units. The training files were made of 39 lymph nodes(24 metastatic lymph nodes. 10 non-metastatic lymph nodes) and the testing files were made of other 20 lymph nodes(10 metastatic lymph nodes. 10 non-metastatic lymph nodes). The neural network system was trained with training files and the output level (metastatic index) of testing files were acquired. Diagnosis was decided according to 4 different standard metastatic index-68. 78. 88. 98 respectively and positive predictive values. negative predictive values and accuracy of each standard metastatic index were calculated. Results: In the diagnosis of using single MR imaging criteria. the rim enhancement criteria had highest positive predictive value (0.95) and the size criteria had highest negative predictive value (0.77). In the diagnosis of using single MR imaging criteria. the highest accurate criteria was heterogeneity (accuracy: 0.81) and the lowest one was central necrosis (accuracy: 0.59). In the diagnosis of using neural network systems. the highest accurate standard metastatic index was 78. and that time. the accuracy was 0.90. Neural network system was more accurate than any other single MR imaging criteria in evaluating cervical lymph node metastasis. Conclusion: Neural network system has been shown to be more useful than any other single MR imaging criteria. In future. Neural network system will be powerful aiding tool in evaluating cervical node metastasis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.