• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.038 seconds

Snoring identification method based on residual convolutional neural network (잔류 합성 곱 신경망 기반의 코골이 식별 방식)

  • Shin, Seung-Su;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.574-579
    • /
    • 2019
  • Snoring is a typical symptom of sleep disorder and it is important to identify the occurrence of snoring because it causes sleep apnea. In this paper, we proposes a residual convolutional neural network as an efficient snoring identification algorithm. Residual convolutional neural network, which is a structure combining residual learning and convolutional neural network, effectively extracts features existing in data more than conventional neural network and improves the accuracy of snoring identification. Experimental results show that the performance of the proposed snoring algorithm is superior to that of the conventional methods.

Forecasting performance and determinants of household expenditure on fruits and vegetables using an artificial neural network model

  • Kim, Kyoung Jin;Mun, Hong Sung;Chang, Jae Bong
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.769-782
    • /
    • 2020
  • Interest in fruit and vegetables has increased due to changes in consumer consumption patterns, socioeconomic status, and family structure. This study determined the factors influencing the demand for fruit and vegetables (strawberries, paprika, tomatoes and cherry tomatoes) using a panel of Rural Development Administration household-level purchases from 2010 to 2018 and compared the ability to the prediction performance. An artificial neural network model was constructed, linking household characteristics with final food expenditure. Comparing the analysis results of the artificial neural network with the results of the panel model showed that the artificial neural network accurately predicted the pattern of the consumer panel data rather than the fixed effect model. In addition, the prediction for strawberries was found to be heavily affected by the number of families, retail places and income, while the prediction for paprika was largely affected by income, age and retail conditions. In the case of the prediction for tomatoes, they were greatly affected by age, income and place of purchase, and the prediction for cherry tomatoes was found to be affected by age, number of families and retail conditions. Therefore, a more accurate analysis of the consumer consumption pattern was possible through the artificial neural network model, which could be used as basic data for decision making.

Performance Comparison Analysis of Artificial Intelligence Models for Estimating Remaining Capacity of Lithium-Ion Batteries

  • Kyu-Ha Kim;Byeong-Soo Jung;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.310-314
    • /
    • 2023
  • The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.

Temperature distribution prediction in longitudinal ballastless slab track with various neural network methods

  • Hanlin Liu;Wenhao Yuan;Rui Zhou;Yanliang Du;Jingmang Xu;Rong Chen
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.83-99
    • /
    • 2023
  • The temperature prediction approaches of three important locations in an operational longitudinal slab track-bridge structure by using three typical neural network methods based on the field measuring platform of four meteorological factors and internal temperature. The measurement experiment of four meteorological factors (e.g., ambient temperature, solar radiation, wind speed, and humidity) temperature in the three locations of the longitudinal slab and base plate of three important locations (e.g., mid-span, beam end, and Wide-Narrow Joint) were conducted, and then their characteristics were analyzed, respectively. Furthermore, temperature prediction effects of three locations under five various meteorological conditions are tested by using three neural network methods, respectively, including the Artificial Neural Network (ANN), the Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN). More importantly, the predicted effects of solar radiation in four meteorological factors could be identified with three indicators (e.g., Root Means Square Error, Mean Absolute Error, Correlation Coefficient of R2). In addition, the LSTM method shows the best performance, while the CNN method has the best prediction effect by only considering a single meteorological factor.

Improved Estimation Method for the Capacitor Voltage in Modular Multilevel Converters Using Distributed Neural Network Observer

  • Mehdi Syed Musadiq;Dong-Myung Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.430-438
    • /
    • 2023
  • The Modular Multilevel Converter (MMC) has emerged as a key component in HVDC systems due to its ability to efficiently transmit large amounts of power over long distances. In such systems, accurate estimation of the MMC capacitor voltage is of utmost importance for ensuring optimal system performance, stability, and reliability. Traditional methods for voltage estimation may face limitations in accuracy and robustness, prompting the need for innovative approaches. In this paper, we propose a novel distributed neural network observer specifically designed for MMC capacitor voltage estimation. Our observer harnesses the power of a multi-layer neural network architecture, which enables the observer to learn and adapt to the complex dynamics of the MMC system. By utilizing a distributed approach, we deploy multiple observers, each with its own set of neural network layers, to collectively estimate the capacitor voltage. This distributed configuration enhances the accuracy and robustness of the voltage estimation process. A crucial aspect of our observer's performance lies in the meticulous initialization of random weights within the neural network. This initialization process ensures that the observer starts with a solid foundation for efficient learning and accurate voltage estimation. The observer iteratively updates its weights based on the observed voltage and current values, continuously improving its estimation accuracy over time. The validity of proposed algorithm is verified by the result of estimated voltage at each observer in capacitor of MMC.

Dynamics-Based Location Prediction and Neural Network Fine-Tuning for Task Offloading in Vehicular Networks

  • Yuanguang Wu;Lusheng Wang;Caihong Kai;Min Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3416-3435
    • /
    • 2023
  • Task offloading in vehicular networks is hot topic in the development of autonomous driving. In these scenarios, due to the role of vehicles and pedestrians, task characteristics are changing constantly. The classical deep learning algorithm always uses a pre-trained neural network to optimize task offloading, which leads to system performance degradation. Therefore, this paper proposes a neural network fine-tuning task offloading algorithm, combining with location prediction for pedestrians and vehicles by the Payne model of fluid dynamics and the car-following model, respectively. After the locations are predicted, characteristics of tasks can be obtained and the neural network will be fine-tuned. Finally, the proposed algorithm continuously predicts task characteristics and fine-tunes a neural network to maintain high system performance and meet low delay requirements. From the simulation results, compared with other algorithms, the proposed algorithm still guarantees a lower task offloading delay, especially when congestion occurs.

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.

On Designing a Control System Using Dynamic Multidimensional Wavelet Neural Network (동적 다차원 웨이브릿 신경망을 이용한 제어 시스템 설계)

  • Cho, Il;Seo, Jae-Yong;Yon, Jung-Heum;Kim, Yong-Taek;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.22-27
    • /
    • 2000
  • In this paper, new neural network called dynamic multidimensional wavelet neural network (DMWNN) is proposed. The resulting network from wavelet theory provides a unique and efficient representation of the given function. Also the proposed DMWNN have ability to store information for later use. Therefore it can represent dynamic mapping and decreases the dimension of the inputs needed for network. This feature of DMWNN can compensate for the weakness of diagonal recurrent neural network(DRNN) and feedforward wavelet neural network(FWNN). The efficacy of this type of network is demonstrated through experimental results.

  • PDF

Comparison between Logistic Regression and Artificial Neural Networks as MMPI Discriminator (MMPI 분석도구로서 인공신경망 분석과 로지스틱 회귀분석의 비교)

  • Lee, Jaewon;Jeong, Bum Seok;Kim, Mi Sug;Choi, Jee Wook;Ahn, Byung Un
    • Korean Journal of Biological Psychiatry
    • /
    • v.12 no.2
    • /
    • pp.165-172
    • /
    • 2005
  • Objectives:The purpose of this study is to 1) conduct a discrimination analysis of schizophrenia and bipolar affective disorder using MMPI profile through artificial neural network analysis and logistic regression analysis, 2) to make a comparison between advantages and disadvantages of the two methods, and 3) to demonstrate the usefulness of artificial neural network analysis of psychiatric data. Procedure:The MMPI profiles for 181 schizophrenia and bipolar affective disorder patients were selected. Of these profiles, 50 were randomly placed in the learning group and the remaining 131 were placed in the validation group. The artificial neural network was trained using the profiles of the learning group and the 131 profiles of the validation group were analyzed. A logistic regression analysis was then conducted in a similar manner. The results of the two analyses were compared and contrasted using sensitivity, specificity, ROC curves, and kappa index. Results:Logistic regression analysis and artificial neural network analysis both exhibited satisfactory discriminating ability at Kappa index of greater than 0.4. The comparison of the two methods revealed artificial neural network analysis is superior to logistic regression analysis in its discriminating capacity, displaying higher values of Kappa index, specificity, and AUC(Area Under the Curve) of ROC curve than those of logistic regression analysis. Conclusion:Artificial neural network analysis is a new tool whose frequency of use has been increasing for its superiority in nonlinear applications. However, it does possess insufficiencies such as difficulties in understanding the relationship between dependent and independent variables. Nevertheless, when used in conjunction with other analysis tools which supplement it, such as the logistic regression analysis, it may serve as a powerful tool for psychiatric data analysis.

  • PDF

Classification of UTI Using RBF and LVQ Artificial Neural Network in Urine Dipstick Screening Test (RBF와 LVQ 인공신경망을 이용한 요(尿) 딥스틱 선별검사에서의 요로감염 분류)

  • Min, Kyoung-Kee;Kang, Myung-Seo;Shin, Ki-Young;Lee, Sang-Sik;Hun, Joung-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.340-347
    • /
    • 2008
  • Dipstick urinalysis is used as a routine test for a screening test of UTI (urinary tract infection) in primary practice because urine dipstick test is simple. The result of dipstick urinalysis brings medical professionals to make a microscopic examination and urine culture for exact UTI diagnosis, therefore it is emphasized on a role of screening test. The objective of this study was to the classification between UTI patients and normal subjects using hybrid neural network classifier with enhanced clustering performance in urine dipstick screening test. In order to propose a classifier, we made a hybrid neural network which combines with RBF layer, summation & normalization layer and L VQ artificial neural network layer. For the demonstration of proposed hybrid neural network, we compared proposed classifier with various artificial neural networks such as back-propagation, RBFNN and PNN method. As a result, classification performance of proposed classifier was able to classify 95.81% of the normal subjects and 83.87% of the UTI patients, total average 90.72% according to validation dataset. The proposed classifier confirms better performance than other classifiers. Therefore the application of such a proposed classifier expect to utilize telemedicine to classify between UTI patients and normal subjects in the future.