• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.033 seconds

Locally-Weighted Polynomial Neural Network for Daily Short-Term Peak Load Forecasting

  • Yu, Jungwon;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.163-172
    • /
    • 2016
  • Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.

The Size Reduction of Artificial Neural Network by Destroying the Connections (연결선 파괴에 의한 인공 신경망의 크기 축소)

  • 이재식;이혁주
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.1
    • /
    • pp.33-51
    • /
    • 2002
  • A fully connected Artificial Neural Network (ANN) contains many connections. Compared to the pruned ANN with fewer connections, the fully connected ANN takes longer time to produce solutions end may not provide appropriate solutions to new unseen date. Therefore, by reducing the sloe of ANN, we can overcome the overfitting problem and increase the computing speed. In this research, we reduced the size of ANN by destroying the connections. In other words, we investigated the performance change of the reduced ANN by systematically destroying the connections. Then we found the acceptable level of connection-destruction on which the resulting ANN Performs as well as the original fully connected ANN. In the previous researches on the sloe reduction of ANN, the reduced ANN had to be retrained every time some connections were eliminated. Therefore, It tool lolly time to obtain the reduced ANN. In this research, however, we provide the acceptable level of connection-destruction according to the size of the fully connected ANN. Therefore, by applying the acceptable level of connection-destruction to the fully connected ANN without any retraining, the reduced ANN can be obtained efficiently.

Development of Intelligent Fault Diagnosis System for CIM (CIM 구축을 위한 지능형 고장진단 시스템 개발)

  • Bae, Yong-Hwan;Oh, Sang-Yeob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • This paper describes the fault diagnosis method to order to construct CIM in complex system with hierarchical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement a special neural network. Fault diagnosis system can forecast faults in a system and decide from the signal information of current machine state. Comparing with other diagnosis system for a single fault, the developed system deals with multiple fault diagnosis, comprising hierarchical neural network (HNN). HNN consists of four level neural network, i.e. first is fault symptom classification and second fault diagnosis for item, third is symptom classification and forth fault diagnosis for component. UNIX IPC is used for implementing HNN with multitasking and message transfer between processes in SUN workstation with X-Windows (Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural network represents a separate process in UNIX operating system, information exchanging and cooperating between each neural network was done by message queue.

  • PDF

High temperature deformation behaviors of AZ31 Mg alloy by Artificial Neural Network (인공 신경망을 이용한 AZ31 Mg 합금의 고온 변형 거동연구)

  • Lee B. H.;Reddy N. S.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.231-234
    • /
    • 2005
  • The high temperature deformation behavior of AZ 31 Mg alloy was investigated by designing a back propagation neural network that uses a gradient descent-learning algorithm. A neural network modeling is an intelligent technique that can solve non-linear and complex problems by learning from the samples. Therefore, some experimental data have been firstly obtained from continuous compression tests performed on a thermo-mechanical simulator over a range of temperatures $(250-500^{\circ}C)$ with strain rates of $0.0001-100s^{-1}$ and true strains of 0.1 to 0.6. The inputs for neural network model are strain, strain rate, and temperature and the output is flow stress. It was found that the trained model could well predict the flow stress for some experimental data that have not been used in the training. Workability of a material can be evaluated by means of power dissipation map with respect to strain, strain rate and temperature. Power dissipation map was constructed using the flow stress predicted from the neural network model at finer Intervals of strain, strain rates and subsequently processing maps were developed for hot working processes for AZ 31 Mg alloy. The safe domains of hot working of AZ 31 Mg alloy were identified and validated through microstructural investigations.

  • PDF

Design and Implementation of Neural Network Controller with a Fuzzy Compensator for Hydraulic Servo-Motor (유압서보모터를 위한 퍼지보상기를 갖는 신경망제어기 설계 및 구현)

  • 김용태;이상윤;신위재;유관식
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.141-144
    • /
    • 2001
  • In this paper, we proposed a neural network controller with a fuzzy compensator which compensate a output of neural network controller. Even if learn by neural network controller, it can occur a bad results from disturbance or load variations. So in order to adjust above case. we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning an inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. In order to confirm a performance of the proposed controller, we implemented the controller using the DSP processor and applied in a hydraulic servo system. And then we observed an experimental results.

  • PDF

H infinity control design for Eight-Rotor MAV attitude system based on identification by interval type II fuzzy neural network

  • CHEN, Xiangjian;SHU, Kun;LI, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.195-203
    • /
    • 2016
  • In order to overcome the influence of system stability and accuracy caused by uncertainty, estimation errors and external disturbances in Eight-Rotor MAV, L2 gain control method was proposed based on interval type II fuzzy neural network identification here. In this control strategy, interval type II fuzzy neural network is used to estimate the uncertainty and non-linearity factor of the dynamic system, the adaptive variable structure controller is applied to compensate the estimation errors of interval type II fuzzy neural network, and at last, L2 gain control method is employed to suppress the effect produced by external disturbance on system, which is expected to possess robustness for the uncertainty and non-linearity. Finally, the validity of the L2 gain control method based on interval type II fuzzy neural network identifier applied to the Eight-Rotor MAV attitude system has been verified by three prototy experiments.

A Study on the Development of Robust control Algorithm for Stable Robot Locomotion (안정된 로봇걸음걸이를 위한 견실한 제어알고리즘 개발에 관한 연구)

  • Hwang, Won-Jun;Yoon, Dae-Sik;Koo, Young-Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.259-266
    • /
    • 2015
  • This study presents new scheme for various walking pattern of biped robot under the limitted enviroments. We show that the neural network is significantly more attractive intelligent controller design than previous traditional forms of control systems. A multilayer backpropagation neural network identification is simulated to obtain a learning control solution of biped robot. Once the neural network has learned, the other neural network control is designed for various trajectory tracking control with same learning-base. The main advantage of our scheme is that we do not require any knowledge about the system dynamic and nonlinear characteristic, and can therefore treat the robot as a black box. It is also shown that the neural network is a powerful control theory for various trajectory tracking control of biped robot with same learning-vase. That is, we do net change the control parameter for various trajectory tracking control. Simulation and experimental result show that the neural network is practically feasible and realizable for iterative learning control of biped robot.

Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result (피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 초기 연결강도 의존성 개선)

  • Park, Sol-Ji;Joo, No-Ah;Park, Hyun-Il;Kim, Young-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.456-463
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by in-situ test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network(NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network(CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

  • PDF

Web-Based Forecasting System for Flood Runoff with Neural Network (신경회로망을 이용한 Web기반 홍수유출 예측시스템)

  • Hang, Dong-Guk;Jun, Kye-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.437-442
    • /
    • 2005
  • The forecasting of flood runoff in the river is essential for flood control. The purpose of this study is to test a development of system for flood runoff forecasting using neural network model. For the flood events the tested rainfall and runoff data were the input to the input layer and the flood runoff data were used in the output layer To choose the forecasting model which would make up of runoff forecasting system properly, real-time runoff in the river when flood periods were forecasted by using the neural network model and the state-space model. A comparison of the results obtained by the two forecasting models indicated the superiority and reliability of the neural network model over the state-space model. The neural network model was modified to work in the Web and developed to be the basic model of the forecasting system for the flood runoff.

Implementation to eye motion tracking system using OpenCV and convolutional neural network (OpenCV 와 Convolutional neural network를 이용한 눈동자 모션인식 시스템 구현)

  • Lee, Seung Jun;Heo, Seung Won;Lee, Hee Bin;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.379-380
    • /
    • 2018
  • Previoisly presented "Implementation to pupil motion recognition system using convolution neural network".is improved. Using OpenCV, face and eye areas are detected, and then configure the neural network using Numpy. This pupil motion recognition system is based on the Numpy for configuring and calculating the neural network. This system is implemented on DE1-SOC.

  • PDF