• 제목/요약/키워드: neural network.

Search Result 11,766, Processing Time 0.032 seconds

Direct-band spread system for neural network with interference signal control (직접 대역 확산 시스템에서 신경망을 이용한 간섭 신호 제어)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1372-1377
    • /
    • 2013
  • In this Paper, a back propagation neural network learning algorithm based on the complex multilayer perceptron is represented for controling and detecting interference of the received signals in cellular mobile communication system. We proposed neural network adaptive correlator which has fast convergence rate and good performance with combining back propagation neural network and the receiver of cellular. We analyzed and proved that NNAC has lower bit error probability than that of traditional RAKE receiver through results of computer simulation in the presence of the tone and narrow-band interference and the co-channel interference.

A Study on Manufacturing of Precision Injection Mold Using Neural Network (신경회로망을 이용한 정밀 사출금형의 제작에 관한 연구)

  • Lee Sang Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.144-151
    • /
    • 2005
  • To predict the shrinkage of molded parts using numerical simulations, the mathematical model should be simplified to overcome the difficulties of formulation due to non-linearity of problems. So it is hard to predict the shrinkage exactly because of the simplification. In the present work, the neural network is used to predict the shrinkage which can implement nonlinear models very well. Comparison between the results of neural network and that of the commercial analysis software, ABAQUS, shows that the result of the neural network is in better agreement with that of the experiments.

The Performance Advancement of Test Algorithm for Inner Defects In Semiconductor Packages (반도체 패키지의 내부 결함 검사용 알고리즘 성능 향상)

  • Kim J.Y.;Kim C.H.;Yoon S.U.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.721-726
    • /
    • 2005
  • In this study, researchers classifying the artificial flaws in semiconductor. packages are performed by pattern recognition technology. For this purposes, image pattern recognition package including the user made software was developed and total procedure including ultrasonic image acquisition, equalization filtration, binary process, edge detection and classifier design is treated by Backpropagation Neural Network. Specially, it is compared with various weights of Backpropagation Neural Network and it is compared with threshold level of edge detection in preprocessing method for entrance into Multi-Layer Perceptron(Backpropagation Neural network). Also, the pattern recognition techniques is applied to the classification problem of defects in semiconductor packages as normal, crack, delamination. According to this results, it is possible to acquire the recognition rate of 100% for Backpropagation Neural Network.

  • PDF

A Study on Volumetric Shrinkage of Injection Molded Part by Neural Network (신경회로망을 이용한 사출성형품의 체적수축률에 관한 연구)

  • Min, Byeong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.224-233
    • /
    • 1999
  • The quality of injection molded parts is affected by the variables such as materials, design variables of part and mold, molding machine, and processing conditions. It is difficult to consider all the variables at the same time to predict the quality. In this paper neural network was applied to analyze the relationship between processing conditions and volumetric shrinkage of part. Engineering plastic gear was used for the study, and the learning data was extracted by the simulation software like Moldflow. Results of neural network was good agreement with simulation results. Nonlinear regression model was formulated using the test data of 3,125 obtained from neural network, Optimal processing conditions were calculated to minimize the volumetric shrinkage of molded part by the application of RQP(Recursive Quadratic Programming) algorithm.

  • PDF

Evaluation of Thermal Embrittlement Susceptibility in Cast Austenitic Stainless Steel Using Artificial Neural Network (인공신경망을 이용한 주조 스테인리스강의 열취화 민감도 평가)

  • Kim, Cheol;Park, Heung-Bae;Jin, Tae-Eun;Jeong, Ill-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.460-466
    • /
    • 2004
  • Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. This study shows that ferrite content can be predicted by use of the artificial neural network. The neural network has trained teaming data of chemical components and ferrite contents using backpropagation learning process. The predicted results of the ferrite content using trained neural network are in good agreement with experimental ones.

A NNAC using narrowband interference signal control in cellular mobile communication systems (셀룰라 이동 통신에서 NNAC를 이용한 협대역 간섭 신호 제어)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.542-546
    • /
    • 2009
  • In this Paper, a back propagation neural network learning algorithm based on the complex multilayer perceptron is represented for controling and detecting interference of the received signals in cellular mobile communication system. We proposed neural network adaptive correlator which has fast convergence rate and good performance with combining back propagation neural network and the receiver of cellular. We analyzed and proved that NNAC has lower bit error probability than that of traditional RAKE receiver through results of computer simulation in the presence of the tone and narrow - band interference and the co-channel interference.

A Study on the Nonlinear Modeling of Base Isolator Systems by a Neural Network Theory : Application to Lead Rubber Bearings (신경망 이론을 이용한 지진격리 장치의 비선형 모델링 기법 연구 : 납삽입 적층 고무베어링에 적용한 예)

  • 허영철;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.433-441
    • /
    • 2003
  • In this paper, a study on the nonlinear modeling of lead rubber bearings(LRBs) by a neural network theory was carried out. The random tests on the LRB were used for a training of neural network model. Numerical simulations using the neural network model were peformed on a scaled structural model with the LRBs excited by three type of seismic loads and compared with the shaking table tests. As a result, it was shown that the neural network model would be useful to a numerical modeling of LRB.

  • PDF

A Power Quality monitoring system using Neural Network (신경망을 이용한 전력품질 진단시스템)

  • Kim Hong Kyun;Lee Jin Mok;Choi Jea Ho;Lee Sang Hoon;Kim Jea Sig
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.202-204
    • /
    • 2004
  • This paper presents a neural network technology for the detection and classification of the various types of power quality disturbances. Power quality phenomena are short-time problems and of many varieties. Particularly, the transients happen during very short durations to the nano- and microsecond. Thus, a method for detecting ·md classifying transient signals at the same time and in an automatic combines the properties of the wavelet transform and the advantages of neural networks. We test two neural network and compare the results of Backpropagation Neural (BPN) network with Radial basis function network (RBFN). RBFN is more useful to detect and classify than BPN. The configuration of the hardware of PQ-DAS and some case studies are described.

  • PDF

The Study on Position Control of Nonlinear System Using Wavelet Neural Network Controller (웨이블렛 신경회로망 제어기를 이용한 비선형 시스템의 위치 제어에 관한 연구)

  • Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2365-2370
    • /
    • 2008
  • In this paper, applications of wavelet neural network controller to position control of nonlinear system are considered. Wavelet neural network is used in the objectives which improve the efficiency of LQR controllers. It is possible to make unstable nonlinear systems stable by using LQR(Linear Quadratic Regulator) technique. And, in order to be adapted to disturbance effectively in this system it uses wavelet neural network controller. Applying this method to the position control of nonlinear system, its usefulness is verified from the results of experiment.

The Integrity Evaluation of weld zone in railway rails Using Neural Network (신경회로망을 이용한 철도레일 용접부의 건전성평가)

  • 윤인식;임미섭
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.81-86
    • /
    • 2003
  • This study proposes the neural network simulator for the integrity evaluation of weld zone in railway rails. For these purposes, the ultrasonic signals for defects(crack) of weld zone in frames are acquired in the type of time series data and echo strength. The detection of the natural defects in railway truck is performed using the characteristics of echodynamic pattern in ultrasonic signal. And then their applications evaluated feature extraction based on the time-frequency-attractor domain(peak to peak, rise time, rise slope, fall time, fall slope, pulse duration, power spectrum, and bandwidth) and attractor characteristics (fractal dimension and attractor quadrant) etc. The constructed neural network simulator agrees fairly well with the measured results of test block(defect location, beam propagation distance, echo strength, etc). The Proposed neural network simulator in this study can be used for the integrity evaluation of weld zone in railway rails.