• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.035 seconds

Estimation of Aerodynamic Coefficients for a Skid-to-Turn Missile using Neural Network and Recursive Least Square (신경회로망과 순환최소자승법을 이용한 Skid-to-Turn 미사일의 공력 파라미터 추정)

  • Kim, Yun-Hwan;Park, Kyun-Bub;Song, Yong-Kyu;Hwang, Ick-Ho;Choi, Dong-Kyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2012
  • This paper is to estimate aerodynamic coefficients needed to determine the missiles' controller design and stability from simulation data of Skid-to-Turn missile. Method of determining aerodynamic coefficients is to apply Neural Network and Recursive Least Square and results were compared and researched. Also analysing actual flight test data was considered and sensor noise was added. Estimate parameter of data with sensor noise added and estimated performance and reliability for both methods that did not need initial values. Both Neural Network and Recursive Least Square methods showed excellent estimate results without adding the noise and with noise added Neural Network method showed better estimate results.

Predictive System Evaluation of Residual Stresses of Plate Butt Welding Using Neural Network (신경회로망을 이용한 평판 맞대기용접의 잔류응력 예측시스템 개발)

  • 차용훈;성백섭;이연신
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.80-86
    • /
    • 2003
  • This study develops a system for effective prediction of residual stresses by the backpropagation algorithm using the neural network. To achieve this goal, a series of experiments were carried out to and measured the residual stresses using the sectional method. With the experimental results, the optional control algorithms using a neural network could be developed in order to reduce the effect of the external disturbances during GMA welding processes. Then the results obtained from this study were compared between the measured and calculated results, weld guality might be controlled by the neural network based on backpropagation algorithm.. This system can not only help to understand the interaction between the process parameters and residual stress, but also improve the quantity control for welded structures.

Construction of System for Water Quality Forecasting at Dalchun Using Neural Network Model (신경망 모형을 이용한 달천의 수질예측 시스템 구축)

  • Lee, Won-ho;Jun, Kye-won;Kim, Jin-geuk;Yeon, In-sung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.305-314
    • /
    • 2007
  • Forecasting of water quality variation is not an easy process due to the complicated nature of various water quality factors and their interrelationships. The objective of this study is to test the applicability of neural network models to the forecasting of the water quality at Dalchun station in Han River. Input data is consist of monthly data of concentration of DO, BOD, COD, SS and river flow. And this study selected optimal neural network model through changing the number of hidden layer based on input layer(n) from n to 6n. After neural network theory is applied, the models go through training, calibration and verification. The result shows that the proposed model forecast water quality of high efficiency and developed web-based water quality forecasting system after extend model

A Precision Control of Wheeled Mobile Robots Using Neural Network (신경회로망을 이용한 이동로봇의 정밀 제어)

  • Kim, Moo-Jon;Lee, Young-Jin;Park, Sung-Jun;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.689-696
    • /
    • 2000
  • In this paper we propose an eminent controller for wheeled mobile robots. This controller consists of an input-output linearization controller trying to stabilize the system and a neural network controller to compensate for uncertainties. The uncertainties are divided into two parts. First unstructured uncertainties include the elements related with system order such as friction disturbance. Second structure uncertainties are the incorrect system parameters A neural network structure of the proposed overall controller learns structural errors of the wheeled mobile robots with uncertainties and includes the neural network output. This controller learns quickly the model and has good tracking performance Simulation results show that the proposed controller is more efficient than analog controllers.

  • PDF

Modeling of Strength of High Performance Concrete with Artificial Neural Network and Mahalanobis Distance Outlier Detection Method (신경망 이론과 Mahalanobis Distance 이상치 탐색방법을 이용한 고강도 콘크리트 강도 예측 모델 개발에 관한 연구)

  • Hong, Jung-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.122-129
    • /
    • 2010
  • High-performance concrete (HPC) is a new terminology used in concrete construction industry. Several studies have shown that concrete strength development is determined not only by the water-to-cement ratio but also influenced by the content of other concrete ingredients. HPC is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed at demonstrating the possibilities of adapting artificial neural network (ANN) to predict the comprresive strength of HPC. Mahalanobis Distance (MD) outlier detection method used for the purpose increase prediction ability of ANN. The detailed procedure of calculating Mahalanobis Distance (MD) is described. The effects of outlier compared with before and after artificial neural network training. MD outlier detection method successfully removed existence of outlier and improved the neural network training and prediction performance.

Precise Tracking Control of Parallel Robot using Artificial Neural Network (인공신경망을 이용한 병렬로봇의 정밀한 추적제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.200-209
    • /
    • 1999
  • This paper presents a precise tracking control scheme for the proposed parallel robot using artificial neural network. This control scheme is composed of three feedback controllers and one feedforward controller. Conventional PD controller and artificial neural network are used as feedback and feedforward controller respectively. A backpropagation learning strategy is applied to the training of artificial neural network, and PD controller outputs are used as target outputs. The PD controllers are designed at the robot dynamics based on inter-relationship between active joints and moving platform. Feedback controllers insure the total stability of system, and feedforward controller generates the control signal for trajectory tracking. The precise tracking performance of proposed control scheme is proved by computer simulation.

  • PDF

Phoneme Recognition Using Frequency State Neural Network (주파수 상태 신경 회로망을 이용한 음소 인식)

  • Lee, Jun-Mo;Hwang, Yeong-Soo;Kim, Seong-Jong;Shin, In-Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.12-19
    • /
    • 1994
  • This paper reports a new structure for phoneme recognition neural network. The proposed neural network is able to deal with the structure of the frequency bands as well as the temporal structure of phonemic features which used in the conventional TSNN. We trained this neural network using the phonetics (아, 이, 오, ㅅ, ㅊ, ㅍ, ㄱ, ㅇ, ㄹ, ㅁ) and the phoneme recognition of this neural network was a little better than those of conventional TDNN and TSNN using only temporal structure of phonemic features.

  • PDF

Development of Model of Shear Strength Estimative for Steel Fiber Reinforced Concrete Using Neural Network (신경망 기법을 이용한 강섬유 혼입 콘크리트의 전단강도 추정 모형 개발)

  • Kwak, Kae-Hwan;Hwang, Hae-Sung;Kim, Woo-Jong;Jang, Hwa-Sup;Kang, Shin-Muk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • This study, the present study wishes to develop a model that estimates shear strength characteristics of steel fiber reinforced concrete using artifical neural network models. Neural network models, developed as mathematical models, are being widely used not only in its original purpose of pattern recognition, but also in application fields by the function's nonlinear loaming and interpolar ability Neural network has a repetitive rotation algorithm that can cyclically and repeatedly estimate system conditions and parameter ideal values, and it can be used in the modeling of the nonlinear system by nonlinear characteristic functions that construct the system.

Simple AI Robust Digital Position Control of PMSM using Neural Network Compensator (신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어)

  • 윤성구
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.620-623
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a fedforward recall and error back-propagation training. Since the total number of nodes are only eight this system can be easily realized by the general microprocessor. During the normal operation the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. And the state space analysis is performed to obtain the state feedback gains systematically. IN addition the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Singal Processor DS1102 Board (TMS320C31) The basic DSP software is used to write C program which is compiled by using ANSI-C style function prototypes.

  • PDF

A Study on Gantry Control using Neural Network Two Degree of PID Controller (신경회로망 2 자유도 PID 제어기를 이용한 갠트리 크레인제어에 관한 연구)

  • 최성욱;손주한;이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.159-167
    • /
    • 2000
  • During the operation of crane system in the container yard, it is necessary to control the crane trolley position so that the swing of the hanging container is minimized. Recently an automatic control system with high speed and rapid transportation is required. Therefore, we designed a controller to control the crane system with disturbances and weight change. In this paper, we present the neural network two degree of freedom PID controller to control the swing motion and trolley position. Then we executed the computer simulation to verify the performance of the proposed controller and compared the performance of the neural network PID controller with our proposed controller in terms of the rope swing and the precision of position control. Computer simulation results show that the proposed controller has better performances than neural network PID with disturbances.

  • PDF