• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.035 seconds

A Design of Hight Controller of helicopter Using Improved Neural Network (개선된 신경망을 이용한 헬리콥터 고도 제어기 설계)

  • Wang, Hyun-Min;Huh, Kyung-Moo;Woo, Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.229-237
    • /
    • 2001
  • In this paper, we propose two design methods of neural networks controller for the height control of helicopter, one is the design of neural network controller having learning capability and the other is the design of more improved neural network controller. Through the simulation results, we show that the proposed controllers have controllers have enhanced control performance(rapid response, effectiveness and safety) than the typical neural networks controller in the height control of helicopter.

  • PDF

The Study of Neural Networks Using Orthogonal Function System (직교함수를 사용한 신경회로망에 대한 연구)

  • 권성훈;최용준;이정훈;손동설;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.214-217
    • /
    • 1999
  • In this paper we proposed a heterogeneous hidden layer consisting of both sigmoid functions and RBFs(Radial Basis Function) in multi-layered neural networks. Focusing on the orthogonal relationship between the sigmoid function and its derivative, a derived RBF that is a derivative of the sigmoid function is used as the RBF in the neural network. so the proposed neural network is called ONN's feasibility Neural Network). Identification results using a nonlinear. function confirm both the ONN's feasibility and characteristics by comparing with those obtained using a conventional neural network which has sigmoid function or RBF in hidden layer.

  • PDF

The speed control of induction motor using neural networks (신경회로망을 이용한 유도전동기 속도제어)

  • 김세찬;원충연
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.42-53
    • /
    • 1996
  • The paper presents a speed control system of vector controlled induct- ion motor using neural networks. The main feature of proposed speed control system is a Neural Network Controller(NNC) which supplies torque current to induction motor and Neural Network Emulator(NNE) which captures the forward dynamics of induction motor. A back propagation training algorithm is employed to train the NNE and NNC. In order to determine the NNC output error, plant(induction motor) output error can be back propagated through the NNE. The NNC and NNE for speed control of vector controlled induction motor is carried out by TMS320C30 DSP and IGBT current regulated PWM inverter. Through computer simulation and experimental results, it is verified that proposed speed control system is robust to the load variation. (author). refs., figs.

  • PDF

A Study on Power Quality Diagnosis System using Neural NetWorks (전기품질 진단 시스템 개발을 위한 인공 신경망 적용에 관한 연구)

  • Kim, Jin-Su;Kim, Young-Il;Kim, Kwang-Soon;Park, Gi-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1351-1359
    • /
    • 2007
  • In this paper, we have studied the power quality(PQ) diagnosis system with the two methods for PQ diagnosis. One to Apply a regulation value in compliance with mathematics calculation, and the other Automatic identification using Neural network algorithm. Neural network algorithm is used for an automatic diagnosis of the PQ. The regulation proposed by IEEE 1159 Working group is applied for the precision of the diagnosis. In order to divide accurate segmentation, the algorithm for a computer training used the back propagation out of several neural network algorithms. We have configured the proto-type sample by using Labview and a programmed Neural Networks Algorithm using with C. And arbitrary electric Signal generated by OMICRON Company's CMC 256-6 for an efficiency test.

Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks (신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어)

  • Oh, S.J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.286-286
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks (신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어)

  • Oh, Se-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.154-161
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

  • PDF

Genetic algorithm based deep learning neural network structure and hyperparameter optimization (유전 알고리즘 기반의 심층 학습 신경망 구조와 초모수 최적화)

  • Lee, Sanghyeop;Kang, Do-Young;Park, Jangsik
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.519-527
    • /
    • 2021
  • Alzheimer's disease is one of the challenges to tackle in the coming aging era and is attempting to diagnose and predict through various biomarkers. While the application of various deep learning-based technologies as powerful imaging technologies has recently expanded across the medical industry, empirical design is not easy because there are various deep earning neural networks architecture and categorical hyperparameters that rely on problems and data to solve. In this paper, we show the possibility of optimizing a deep learning neural network structure and hyperparameters for Alzheimer's disease classification in amyloid brain images in a representative deep earning neural networks architecture using genetic algorithms. It was observed that the optimal deep learning neural network structure and hyperparameter were chosen as the values of the experiment were converging.

The study on the Optimal Control of Linear Track Cart Double Inverted Pendulum using neural network (신경망을 이용한 Liner Track Cart Double Inverted Pendulum의 최적제어에 관한 연구)

  • 金成柱;李宰炫;李尙培
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.227-233
    • /
    • 1996
  • The Inverted Pendulum has been one of most popular nonlinear dynamic systems for the exploration of control techniques. This paper presents a new linear optimal control techniques and nonlinear neural network learning methods. The multiayered neural networks are used to add nonlinear effects on the linear optimal regulator(LQR). The new regulator can compensate nonlinear system uncertainties that are not considered in the LQR design, and can tolerated a wider range of uncertainties than the LQR alone. The new regulator has two neural networks for modeling and control. The neural network for modeling is used to obtain a more accurate model than the given mathematical equations. The neural network for control is used to overcome deficiencies by adding corrections to the linear coefficients of the LQR and by adding nonlinear effects on the LQR. Computer simulations are performed to show the applicability and a more robust regulator than the LQR alone.

  • PDF

Techniques for Yield Prediction from Corn Aerial Images - A Neural Network Approach -

  • Zhang, Q.;Panigrahi, S.;Panda, S.S.;Borhan, Md.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.18-28
    • /
    • 2002
  • Neural network based models were developed and evaluated for predicting corn yield from aerial images based on 1998 and 1994 image data. The model used images in multi-spectral bands such as R, G, B, and IR (Red, Green, Blue and Infrared). The inputs to the neural network consisted of mean and standard deviation of multispectral bands of the aerial images. Performances of several neural network architectures using back-propagation with momentum were compared. The maximum yield prediction accuracy obtained was 97.81%. The BPNN model prediction accuracy could be enhanced by using more number of observations to the model, other data transformation techniques, or by performing optical calibration of the aerial image.

  • PDF

Differential Geometric Conditions for the state Observation using a Recurrent Neural Network in a Stochastic Nonlinear System

  • Seok, Jin-Wuk;Mah, Pyeong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.592-597
    • /
    • 2003
  • In this paper, some differential geometric conditions for the observer using a recurrent neural network are provided in terms of a stochastic nonlinear system control. In the stochastic nonlinear system, it is necessary to make an additional condition for observation of stochastic nonlinear system, called perfect filtering condition. In addition, we provide a observer using a recurrent neural network for the observation of a stochastic nonlinear system with the proposed observation conditions. Computer simulation shows that the control performance of the stochastic nonlinear system with a observer using a recurrent neural network satisfying the proposed conditions is more efficient than the conventional observer as Kalman filter

  • PDF