• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.035 seconds

Comparison between nonlinear statistical time series forecasting and neural network forecasting

  • Inkyu;Cheolyoung;Sungduck
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.87-96
    • /
    • 2000
  • Nonlinear time series prediction is derived and compared between statistic of modeling and neural network method. In particular mean squared errors of predication are obtained in generalized random coefficient model and generalized autoregressive conditional heteroscedastic model and compared with them by neural network forecasting.

  • PDF

퍼지 학습 규칙을 이용한 퍼지 신경회로망

  • 김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.180-184
    • /
    • 1997
  • This paper presents the fuzzy neural network which utilizes a fuzzified Kohonen learning uses a fuzzy membership value, a function of the iteration, and a intra-membership value instead of a learning rate. The IRIS data set if used to test the fuzzy neural network. The test result shows the performance of the fuzzy neural network depends on k and the vigilance parameter T.

  • PDF

FEEDFORWARD NEURAL NETWORKS AND SEPARATION OF GEOMETRIC REGIONS

  • PARK, KYEONGSU
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.271-279
    • /
    • 2019
  • We investigate how a feedforward neural network works to separate a geometric region from its complement. Our investigations are restricted to regions in ${\mathbb{R}}$ or ${\mathbb{R}}^2$ including an interval, a triangular region, a disk and the union of two disjoint disks. We also examine what happens at each layer of the network.

A Study on Neural Network for Path Searching in Switching Network (스윗칭회로의 경로설정을 위한 신경 회로망 연구)

  • Park, Seung-Kyu;Lee, Noh-Sung;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.432-435
    • /
    • 1990
  • Neural networks are a class of systems that have many simple processors (neurons) which are highly interconnected. The function of each neuron is simple, and the behavior is determined predominately by the set of interconnections. Thus, a neural network is a special form of parallel computer. Although major impetus for using neural networks is that they may be able to "learn" the solution to the problem that they are to solve, we argue that another, perhaps even stronger, impetus is that they provide a framework for designing massively parallel machines. The highly interconnected architecture of switching networks suggests similarities to neural networks. Here, we present switching applications in which neural networks can solve the problems efficiently. We also show that a computational advantage can be gained by using nonuniform time delays in the network.

  • PDF

Parameter Estimater of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 파라미터 추정)

  • Jung, Tack-Gi;Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.197-199
    • /
    • 2003
  • This paper is Proposed a neural network based estimator for torque and ststor resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

  • PDF

Intelligent Control of Nuclear Power Plant Steam Generator Using Neural Networks (신경회로망을 이용한 원자력발전소 증기발생기의 지능제어)

  • Kim, Sung-Soo;Lee, Jae-Gi;Choi, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.127-137
    • /
    • 2000
  • This paper presents a novel neural based controller which controls the water level of the nuclear power plant steam generator. The controller consists of a model reference feedback linearization controller and a PI controller for stabilizing the feedback linearization controller. The feedback linearization controller consists of a neural network model and an inversing module which uses the neural network model for computing the control input to the steam generator. We chose Piecewise Linearly Trained Network(PLTN) and Recurrent Neural Netwrok(RNN) for an approximator of the plant and used these approximators in calculating the input from the feedback linearization controller. Combining the above two controllers gives a result of better performance than the case which uses only a PI controller Each control result of PLTN and RNN is given.

  • PDF

Intelligent Control Design of Mobile robot Using Neural-Fuzzy Control Method (뉴럴-퍼지 제어기법에 의한 이동로봇의 지능제어기 설계)

  • 한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.62-67
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized loaming architecture. It is Proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tucking of the speed and azimuth of a mobile robot driven by two independent wheels.

Wideband Speech Reconstruction Using Modular Neural Networks (모듈화한 신경 회로망을 이용한 광대역 음성 복원)

  • Woo Dong Hun;Ko Charm Han;Kang Hyun Min;Jeong Jin Hee;Kim Yoo Shin;Kim Hyung Soon
    • MALSORI
    • /
    • no.48
    • /
    • pp.93-105
    • /
    • 2003
  • Since telephone channel has bandlimited frequency characteristics, speech signal over the telephone channel shows degraded speech quality. In this paper, we propose an algorithm using neural network to reconstruct wideband speech from its narrowband version. Although single neural network is a good tool for direct mapping, it has difficulty in training for vast and complicated data. To alleviate this problem, we modularize the neural networks based on appropriate clustering of the acoustic space. We also introduce fuzzy computing to compensate for probable misclassification at the cluster boundaries. According to our simulation, the proposed algorithm showed improved performance over the single neural network and conventional codebook mapping method in both objective and subjective evaluations.

  • PDF

Analysis of Neural Network Approaches for Nonlinear Modeling of Switched Reluctance Motor Drive

  • Saravanan, P;Balaji, M;Balaji, Nagaraj K;Arumugam, R
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1548-1555
    • /
    • 2017
  • This paper attempts to employ and investigate neural based approaches as interpolation tools for modeling of Switched Reluctance Motor (SRM) drive. Precise modeling of SRM is essential to analyse the performance of control strategies for variable speed drive application. In this work the suitability of Generalized Regression Neural Network (GRNN) and Extreme Learning Machine (ELM) in addition to conventional neural network are explored for improving the modeling accuracy of SRM. The neural structures are trained with the data obtained by modeling of SRM using Finite Element Analysis (FEA) and the trained neural network is incorporated in the model of SRM drive. The results signify the modeling accuracy with GRNN model. The closed loop drive simulation is performed in MATLAB/Simulink environment and the closeness of the results in comparison with the experimental prototype validates the modeling approach.