• 제목/요약/키워드: neural network.

Search Result 11,766, Processing Time 0.036 seconds

Human Motion Recognition Based on Spatio-temporal Convolutional Neural Network

  • Hu, Zeyuan;Park, Sange-yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.977-985
    • /
    • 2020
  • Aiming at the problem of complex feature extraction and low accuracy in human action recognition, this paper proposed a network structure combining batch normalization algorithm with GoogLeNet network model. Applying Batch Normalization idea in the field of image classification to action recognition field, it improved the algorithm by normalizing the network input training sample by mini-batch. For convolutional network, RGB image was the spatial input, and stacked optical flows was the temporal input. Then, it fused the spatio-temporal networks to get the final action recognition result. It trained and evaluated the architecture on the standard video actions benchmarks of UCF101 and HMDB51, which achieved the accuracy of 93.42% and 67.82%. The results show that the improved convolutional neural network has a significant improvement in improving the recognition rate and has obvious advantages in action recognition.

A Study on the Word Recognition of Korean Speech using Neural Network- A study on the initial consonant Recognition using composite Neural Network (신경망을 이용한 우리말 음성의 인식에 관한 연구 - 복합 신경망을 이용한 초성자음 인식에 관한 연구)

  • Kim, Suk-Dong;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.14-24
    • /
    • 1992
  • This paper is a study on the consonant recognition using neural network. First, the part of consonant was separated from the sound of vowel and consonant by the use of acoustic parameter. The rate of length vs. zero crossing rate in the sound of consonant had been studied by dividing each consonant into several groups. Finally, for the purpose of consonant recognition, the composite neural network which consists of a control network and several sub-network is proposed. The control network identifies the group to which the input consonant belongs and the sub-network recognizes the consonant in each group.

  • PDF

Neural Network Image Reconstruction for Magnetic Particle Imaging

  • Chae, Byung Gyu
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.841-850
    • /
    • 2017
  • We investigate neural network image reconstruction for magnetic particle imaging. The network performance strongly depends on the convolution effects of the spectrum input data. The larger convolution effect appearing at a relatively smaller nanoparticle size obstructs the network training. The trained single-layer network reveals the weighting matrix consisting of a basis vector in the form of Chebyshev polynomials of the second kind. The weighting matrix corresponds to an inverse system matrix, where an incoherency of basis vectors due to low convolution effects, as well as a nonlinear activation function, plays a key role in retrieving the matrix elements. Test images are well reconstructed through trained networks having an inverse kernel matrix. We also confirm that a multi-layer network with one hidden layer improves the performance. Based on the results, a neural network architecture overcoming the low incoherence of the inverse kernel through the classification property is expected to become a better tool for image reconstruction.

Video Quality Assessment based on Deep Neural Network

  • Zhiming Shi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2053-2067
    • /
    • 2023
  • This paper proposes two video quality assessment methods based on deep neural network. (i)The first method uses the IQF-CNN (convolution neural network based on image quality features) to build image quality assessment method. The LIVE image database is used to test this method, the experiment show that it is effective. Therefore, this method is extended to the video quality assessment. At first every image frame of video is predicted, next the relationship between different image frames are analyzed by the hysteresis function and different window function to improve the accuracy of video quality assessment. (ii)The second method proposes a video quality assessment method based on convolution neural network (CNN) and gated circular unit network (GRU). First, the spatial features of video frames are extracted using CNN network, next the temporal features of the video frame using GRU network. Finally the extracted temporal and spatial features are analyzed by full connection layer of CNN network to obtain the video quality assessment score. All the above proposed methods are verified on the video databases, and compared with other methods.

Estrus Detection in Sows Based on Texture Analysis of Pudendal Images and Neural Network Analysis

  • Seo, Kwang-Wook;Min, Byung-Ro;Kim, Dong-Woo;Fwa, Yoon-Il;Lee, Min-Young;Lee, Bong-Ki;Lee, Dae-Weon
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.271-278
    • /
    • 2012
  • Worldwide trends in animal welfare have resulted in an increased interest in individual management of sows housed in groups within hog barns. Estrus detection has been shown to be one of the greatest determinants of sow productivity. Purpose: We conducted this study to develop a method that can automatically detect the estrus state of a sow by selecting optimal texture parameters from images of a sow's pudendum and by optimizing the number of neurons in the hidden layer of an artificial neural network. Methods: Texture parameters were analyzed according to changes in a sow's pudendum in estrus such as mucus secretion and expansion. Of the texture parameters, eight gray level co-occurrence matrix (GLCM) parameters were used for image analysis. The image states were classified into ten grades for each GLCM parameter, and an artificial neural network was formed using the values for each grade as inputs to discriminate the estrus state of sows. The number of hidden layer neurons in the artificial neural network is an important parameter in neural network design. Therefore, we determined the optimal number of hidden layer units using a trial and error method while increasing the number of neurons. Results: Fifteen hidden layers were determined to be optimal for use in the artificial neural network designed in this study. Thirty images of 10 sows were used for learning, and then 30 different images of 10 sows were used for verification. Conclusions: For learning, the back propagation neural network (BPN) algorithm was used to successful estimate six texture parameters (homogeneity, angular second moment, energy, maximum probability, entropy, and GLCM correlation). Based on the verification results, homogeneity was determined to be the most important texture parameter, and resulted in an estrus detection rate of 70%.

Application of the Neural Network to Predict the Adolescents' Computer Entertainment Behavior (청소년의 컴퓨터 오락추구 행동을 예측하기 위한 신경망 활용)

  • Lee, Hyejoo;Jung, Euihyun
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.2
    • /
    • pp.39-48
    • /
    • 2013
  • This study investigates the predictive model of the adolescents' computer entertainment behavior using neural network with the KYPS data (3449 in the junior high school; 1725 boys and 1724 girls). This study compares the results of neural network(model 1) to the logistic regression model and neural network(model 2) with the exact same variables used in logistic regression. The results reveal that the prediction of neural network model 1 is the highest among three models and with gender, computer use time, family income, the number of close friends, the number of misdeed friends, individual study time, self-control, private education time, leisure time, self-belief, stress, adaptation to school, and study related worries, the neural network model 1 predicts the computer entertainment behavior more efficiently. These results suggest that the neural network could be used for diagnosing and adjusting the adolescents' computer entertainment behavior.

  • PDF

2D Game Image Color Synthesis System Using Convolutional Neural Network (컨볼루션 인공신경망을 이용한 2차원 게임 이미지 색상 합성 시스템)

  • Hong, Seung Jin;Kang, Shin Jin;Cho, Sung Hyun
    • Journal of Korea Game Society
    • /
    • v.18 no.2
    • /
    • pp.89-98
    • /
    • 2018
  • The recent Neural Network technique has shown good performance in content generation such as image generation in addition to the conventional classification problem and clustering problem solving. In this study, we propose an image generation method using artificial neural network as a next generation content creation technique. The proposed artificial neural network model receives two images and combines them into a new image by taking color from one image and shape from the other image. This model is made up of Convolutional Neural Network, which has two encoders for extracting color and shape from images, and a decoder for taking all the values of each encoder and generating a combination image. The result of this work can be applied to various 2D image generation and modification works in game development process at low cost.

Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates (비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델)

  • Kim Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.800-804
    • /
    • 2005
  • This paper presents a fuzzy learning rule which is the fuzzified version of LVQ(Learning Vector Quantization). This fuzzy learning rule 3 uses fuzzy learning rates. instead of the traditional learning rates. LVQ uses the same learning rate regardless of correctness of classification. But, the new fuzzy learning rule uses the different learning rates depending on whether classification is correct or not. The new fuzzy learning rule is integrated into the improved IAFC(Integrated Adaptive Fuzzy Clustering) neural network. The improved IAFC neural network is both stable and plastic. The iris data set is used to compare the performance of the supervised IAFC neural network 3 with the performance of backprogation neural network. The results show that the supervised IAFC neural network 3 is better than backpropagation neural network.

A Study on Bagging Neural Network for Predicting Defect Size of Steam Generator Tube in Nuclear Power Plant (원전 증기발생기 세관 결함 크기 예측을 위한 Bagging 신경회로망에 관한 연구)

  • Kim, Kyung-Jin;Jo, Nam-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.302-310
    • /
    • 2010
  • In this paper, we studied Bagging neural network for predicting defect size of steam generator(SG) tube in nuclear power plant. Bagging is a method for creating an ensemble of estimator based on bootstrap sampling. For predicting defect size of SG tube, we first generated eddy current testing signals for 4 defect patterns of SG tube with various widths and depths. Then, we constructed single neural network(SNN) and Bagging neural network(BNN) to estimate width and depth of each defect. The estimation performance of SNN and BNN were measured by means of peak error. According to our experiment result, average peak error of SNN and BNN for estimating defect depth were 0.117 and 0.089mm, respectively. Also, in the case of estimating defect width, average peak error of SNN and BNN were 0.494 and 0.306mm, respectively. This shows that the estimation performance of BNN is superior to that of SNN.

Development of an Artificial Neural Network Expert System for Preliminary Design of Tunnel in Rock Masses (암반터널 예비설계를 위한 인공신경회로망 전문가 시스템의 개발)

  • 이철욱;문현구
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.79-96
    • /
    • 1994
  • A tunnel design expert system entitled NESTED is developed using the artificial neural network. The expert system includes three neural network computer models designed for the stability assessment of underground openings and the estimation of correlation between the RMR and Q systems. The expert system consists of the three models and the computerized rock mass classification programs that could be driven under the same user interface. As the structure of the neural network, a multi -layer neural network which adopts an or ror back-propagation learning algorithm is used. To set up its knowledge base from the prior case histories, an engineering database which can control the incomplete and erroneous information by learning process is developed. A series of experiments comparing the results of the neural network with the actual field observations have demonstrated the inferring capabilities of the neural network to identify the possible failure modes and the support timing. The neural network expert system thus complements the incomplete geological data and provides suitable support recommendations for preliminary design of tunnels in rock masses.

  • PDF