• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.037 seconds

LSTM Network with Tracking Association for Multi-Object Tracking

  • Farhodov, Xurshedjon;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1236-1249
    • /
    • 2020
  • In a most recent object tracking research work, applying Convolutional Neural Network and Recurrent Neural Network-based strategies become relevant for resolving the noticeable challenges in it, like, occlusion, motion, object, and camera viewpoint variations, changing several targets, lighting variations. In this paper, the LSTM Network-based Tracking association method has proposed where the technique capable of real-time multi-object tracking by creating one of the useful LSTM networks that associated with tracking, which supports the long term tracking along with solving challenges. The LSTM network is a different neural network defined in Keras as a sequence of layers, where the Sequential classes would be a container for these layers. This purposing network structure builds with the integration of tracking association on Keras neural-network library. The tracking process has been associated with the LSTM Network feature learning output and obtained outstanding real-time detection and tracking performance. In this work, the main focus was learning trackable objects locations, appearance, and motion details, then predicting the feature location of objects on boxes according to their initial position. The performance of the joint object tracking system has shown that the LSTM network is more powerful and capable of working on a real-time multi-object tracking process.

Assessing Convolutional Neural Network based Malicious Network Traffic Detection Methods (컨볼루션 신경망 기반 유해 네트워크 트래픽 탐지 기법 평가)

  • Yeom, Sungwoong;Nguyen, Van-Quyet;Kim, Kyungbaek
    • KNOM Review
    • /
    • v.22 no.1
    • /
    • pp.20-29
    • /
    • 2019
  • Recently, various machine learning based traffic classification methods are focused on detecting malicious network traffic. In this paper, convolutional neural network based malicious network traffic classification method is introduced and its performance is evaluated. In order to utilize the convolutional neural network which is excellent in analyzing images, a image transform method from important information of network traffic to a standardized image is proposed, and the transformed images are used as learning input of a CNN network traffic classifier. By using the real network traffic dataset, the proposed image transform method and CNN based network traffic classification method are evaluated. Especially, under various configurations of CNN, the performance of the proposed method is evaluated.

Modeling of RF Sputtering Process for ZnO Thin film Deposition using Neural Network (신경회로망을 이용한 RF 스퍼터링 ZnO 박막 증착 프로세스 모델링)

  • Lim, Keun-Young;Lee, Sang-Keuk;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.624-630
    • /
    • 2006
  • ZnO deposition parameters are not independent and have a nonlinear and complex property. To propose a method that could verify and predict the relations of process variables, neural network was used. At first, ZnO thin films were deposited by using RF magnetron sputtering process with various conditions. Si, GaAs, and Glass were used as substrates. The temperature, work pressure, and RF power of the substrate were $50\sim500^{\circ}C$, 15 mTorr, and $180\sim210W$, respectively : the purity of the target was ZnO 4 N. Structural properties of ZnO thin films were estimated by using XRD (0002) peak intensity. The structure of neural network was a form of 4-7-1 that have one hidden layer. In training a network, learning rate and momentum were selected as 0.2, 0.6 respectively. A backpropagation neural network were performed with XRD (0002) peak data. After training a network, the temperature of substrate was evaluated as the most important parameter by sensitivity analysis and response surface. As a result, neural network could capture nonlinear and complex relationships between process parameters and predict structural properties of ZnO thin films with a limited set of experiments.

Learning for Environment and Behavior Pattern Using Recurrent Modular Neural Network Based on Estimated Emotion (감정평가에 기반한 환경과 행동패턴 학습을 위한 궤환 모듈라 네트워크)

  • Kim, Seong-Joo;Choi, Woo-Kyung;Kim, Yong-Min;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2004
  • Rational sense is affected by emotion. If we add the factor of estimated emotion by environment information into robots, we may get more intelligent and human-friendly robots. However, various sensory information and pattern classification are prescribed for robots to learn emotion so that the networks are suitable for the necessity of robots. Neural network has superior ability to extract character of system but neural network has defect of temporal cross talk and local minimum convergence. To solve the defects, many kinds of modular neural networks have been proposed because they divide a complex problem into simple several subproblems. The modular neural network, introduced by Jacobs and Jordan, shows an excellent ability of recomposition and recombination of complex work. On the other hand, the recurrent network acquires state representations and representations of state make the recurrent neural network suitable for diverse applications such as nonlinear prediction and modeling. In this paper, we applied recurrent network for the expert network in the modular neural network structure to learn data pattern based on emotional assessment. To show the performance of the proposed network, simulation of learning the environment and behavior pattern is proceeded with the real time implementation. The given problem is very complex and has too many cases to learn. The result will show the performance and good ability of the proposed network and will be compared with the result of other method, general modular neural network.

A Comparative Study of Speech Parameters for Speech Recognition Neural Network (음성 인식 신경망을 위한 음성 파라키터들의 성능 비교)

  • Kim, Ki-Seok;Im, Eun-Jin;Hwang, Hee-Yung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.61-66
    • /
    • 1992
  • There have been many researches that uses neural network models for automatic speech recognition, but the main trend was finding the neural network models and learning rules appropriate to automatic speech recognition. However, the choice of the input speech parameter for the neural network as well as neural network model itself is a very important factor for the improvement of performance of the automatic speech recognition system using neural network. In this paper we select 6 speech parameters from surveys of the speech recognition papers which uses neural networks, and analyze the performance for the same data and the same neural network model. We use 8 sets of 9 Korean plosives and 18 sets of 8 Korean vowels. We use recurrent neural network and compare the performance of the 6 speech parameters while the number of nodes is constant. The delta cepstrum of linear predictive coefficients showed best result and the recognition rates are 95.1% for the vowels and 100.0% for plosives.

  • PDF

Development of Convolutional Neural Network Basic Practice Cases (합성곱 신경망 기초 실습 사례 개발)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.279-285
    • /
    • 2022
  • In this paper, as a liberal arts course for non-majors, we developed a basic practice case for convolutional neural networks, which is essential for designing a basic convolutional neural network course curriculum. The developed practice case focuses on understanding the working principle of the convolutional neural network and uses a spreadsheet to check the entire visualized process. The developed practice case consisted of generating supervised learning method image training data, implementing the input layer, convolution layer (convolutional layer), pooling layer, and output layer sequentially, and testing the performance of the convolutional neural network on new data. By extending the practice cases developed in this paper, the number of images to be recognized can be expanded, or basic practice cases can be made to create a convolutional neural network that increases the compression rate for high-quality images. Therefore, it can be said that the utility of this convolutional neural network basic practice case is high.

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

Neural Predictive Coding for Text Compression Using GPGPU (GPGPU를 활용한 인공신경망 예측기반 텍스트 압축기법)

  • Kim, Jaeju;Han, Hwansoo
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.3
    • /
    • pp.127-132
    • /
    • 2016
  • Several methods have been proposed to apply artificial neural networks to text compression in the past. However, the networks and targets are both limited to the small size due to hardware capability in the past. Modern GPUs have much better calculation capability than CPUs in an order of magnitude now, even though CPUs have become faster. It becomes possible now to train greater and complex neural networks in a shorter time. This paper proposed a method to transform the distribution of original data with a probabilistic neural predictor. Experiments were performed on a feedforward neural network and a recurrent neural network with gated-recurrent units. The recurrent neural network model outperformed feedforward network in compression rate and prediction accuracy.

A Study on the Gender and Age Classification of Speech Data Using CNN (CNN을 이용한 음성 데이터 성별 및 연령 분류 기술 연구)

  • Park, Dae-Seo;Bang, Joon-Il;Kim, Hwa-Jong;Ko, Young-Jun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.11-21
    • /
    • 2018
  • Research is carried out to categorize voices using Deep Learning technology. The study examines neural network-based sound classification studies and suggests improved neural networks for voice classification. Related studies studied urban data classification. However, related studies showed poor performance in shallow neural network. Therefore, in this paper the first preprocess voice data and extract feature value. Next, Categorize the voice by entering the feature value into previous sound classification network and proposed neural network. Finally, compare and evaluate classification performance of the two neural networks. The neural network of this paper is organized deeper and wider so that learning is better done. Performance results showed that 84.8 percent of related studies neural networks and 91.4 percent of the proposed neural networks. The proposed neural network was about 6 percent high.

Calculating Data and Artificial Neural Network Capability (데이터와 인공신경망 능력 계산)

  • Yi, Dokkyun;Park, Jieun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • Recently, various uses of artificial intelligence have been made possible through the deep artificial neural network structure of machine learning, demonstrating human-like capabilities. Unfortunately, the deep structure of the artificial neural network has not yet been accurately interpreted. This part is acting as anxiety and rejection of artificial intelligence. Among these problems, we solve the capability part of artificial neural networks. Calculate the size of the artificial neural network structure and calculate the size of data that the artificial neural network can process. The calculation method uses the group method used in mathematics to calculate the size of data and artificial neural networks using an order that can know the structure and size of the group. Through this, it is possible to know the capabilities of artificial neural networks, and to relieve anxiety about artificial intelligence. The size of the data and the deep artificial neural network are calculated and verified through numerical experiments.