• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.037 seconds

Characteristics Modeling of Dynamic Systems Using Adaptive Neural Computation (적응 뉴럴 컴퓨팅 방법을 이용한 동적 시스템의 특성 모델링)

  • Kim, Byoung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.309-314
    • /
    • 2007
  • This paper presents an adaptive neural computation algorithm for multi-layered neural networks which are applied to identify the characteristic function of dynamic systems. The main feature of the proposed algorithm is that the initial learning rate for the employed neural network is assigned systematically, and also the assigned learning rate can be adjusted empirically for effective neural leaning. By employing the approach, enhanced modeling of dynamic systems is possible. The effectiveness of this approach is veri tied by simulations.

Soft computing with neural networks for engineering applications: Fundamental issues and adaptive approaches

  • Ghaboussi, Jamshid;Wu, Xiping
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.955-969
    • /
    • 1998
  • Engineering problems are inherently imprecision tolerant. Biologically inspired soft computing methods are emerging as ideal tools for constructing intelligent engineering systems which employ approximate reasoning and exhibit imprecision tolerance. They also offer built-in mechanisms for dealing with uncertainty. The fundamental issues associated with engineering applications of the emerging soft computing methods are discussed, with emphasis on neural networks. A formalism for neural network representation is presented and recent developments on adaptive modeling of neural networks, specifically nested adaptive neural networks for constitutive modeling are discussed.

A study of distillation column control by using a neural controller (신경제어기를 이용한 증류탑의 제어에 관한 연구)

  • 이문용;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.234-239
    • /
    • 1990
  • A neural controller for process control was proposed that combines a simple feedback controller with a neural network. This control was applied to distillation control. The feedback error learning technique was used for on-line learning. Important characteristics on neural controller were analyzed. The proposed neural controller can cope well with strong interactions, significant time delays, sudden changes in process dynamics without any prior knowledge of the process. It was shown that the neural controller has good features such as fault tolerance, interpolation effect and random learning capability

  • PDF

A Study on the Soiution of Inverse Kinematic of Manipulator using Self-Organizing Neural Network and Fuzzy Compensator (퍼지 보상기와 자기구성 신경회로망을 이용한 매니퓰레이터의 역기구학 해에 관한 연구)

  • 김동희;이수흠;신위재
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.79-85
    • /
    • 2001
  • We obtain a solution of inverse kinematic of 3 axis manipulator by using a self-organizing neral network(SONN) with a fuzzy compensator. The self-organizing neural network using the gaussian potential function as the activation function has one hidden layer in the first learning time. The network obtains the optimal number of node by increasing the number of hidden layer node through the learning, and the fuzzy compensator has the optimal loaming rate of neutral network. In this results, we can confirmed that the learning rate is improved and the rapid convergence to the steady-state.

  • PDF

Neural Network Based Classification of Time-Varying Signals Distorted by Shallow Water Environment (천해환경에 의해 변형된 시변신호의 신경망을 통한 식별)

  • Na, Young-Nam;Shim, Tae-Bo;Chang, Duck-Hong;Kim, Chun-Duck
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.27-34
    • /
    • 1997
  • In this study , we tried to test the classification performance of a neural netow and thereby to examine its applicability to the signals distorted by a shallow water einvironment . We conducted an acoustic experiment iin a shallow sea near Pohang, Korea in which water depth is about 60m. The signals, on which the network has been tested, is ilinear frequency modulated ones centered on one of the frequencies, 200, 400, 600 and 800 Hz, each being swept up or down with bandwidth 100Hz. we considered two transforms, STFT(short-time Fourier transform) and PWVD (pseudo Wigner-Ville distribution), form which power spectra were derived. The training signals were simulated using an acoutic model based on the Fourier synthesis scheme. When the network has been trained on the measured signals of center frequency 600Hz,it gave a little better results than that trained onthe simulated . With the center frequencies varied, the overall performance reached over 90% except one case of center frequency 800Hz. With the feature extraction techniques(STFT and PWVD) varied,the network showed performance comparable to each other . In conclusion , the signals which have been simulated with water depth were successully applied to training a neural network, and the trained network performed well in classifying the signals distorted by a surrounding environment and corrupted by noise.

  • PDF

Fast Learning Algorithms for Neural Network Using Tabu Search Method with Random Moves (Random Tabu 탐색법을 이용한 신경회로망의 고속학습알고리즘에 관한 연구)

  • 양보석;신광재;최원호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.83-91
    • /
    • 1995
  • A neural network with one or more layers of hidden units can be trained using the well-known error back propagation algorithm. According to this algorithm, the synaptic weights of the network are updated during the training by propagating back the error between the expected output and the output provided by the network. However, the error back propagation algorithm is characterized by slow convergence and the time required for training and, in some situation, can be trapped in local minima. A theoretical formulation of a new fast learning method based on tabu search method is presented in this paper. In contrast to the conventional back propagation algorithm which is based solely on the modification of connecting weights of the network by trial and error, the present method involves the calculation of the optimum weights of neural network. The effectiveness and versatility of the present method are verified by the XOR problem. The present method excels in accuracy compared to that of the conventional method of fixed values.

  • PDF

A Study on Multiple Target Tracking Using Self-Organizing Neural Network (자기조직화 신경망을 이용한 다중 표적 추적에 관한 연구)

  • 서창진;김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1304-1311
    • /
    • 2003
  • Target tracking in a real world situation is difficult problem because of continuous variations in images, huge amounts of data, and high processing speed demands. The problem becomes even harder in the case of sea background. This paper presents an initial study of neural network based method for target detection and tracking in cluttering environment. The approach uses a combination of differential motion analysis, Kohonen self-organizing network and region growing method. The network is capable of detecting the mass-centers of moving objects within one frame. The history of neurons positions in the sequential frames approximates the traces of the targets. The experiments done with the network in simulated environment showed promising results.

KOHONEN NETWORK FOR ADAPTIVE IMAGE COMPRESSION (영상압축을 위한 코넨네트워크)

  • 손형경;이영식;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.571-574
    • /
    • 2001
  • In our paper, We propose an efficient adaptive coding method using kohonen neural network. An efficient adaptive encoding method using Kohonen net work is discribed through the analysis of those compression methods with the application of the neural network. In order to increase the compression ratio, a image is first divided into 8*8 subimages, then all subimages are transformed by DCT. These DCT sub-blocks are divided into N(4) classes by Kohonen network. Hits are distributed according to the variance of the DCT sub-block. Thus we get N(4)bit allocation matrices. Excellent performance is shown by the computer simulation. so we found that our proposed method is better then classifing subimages by AC energy.

  • PDF

Development of Link Cost Function using Neural Network Concept in Sensor Network

  • Lim, Yu-Jin;Kang, Sang-Gil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.141-156
    • /
    • 2011
  • In this paper we develop a link cost function for data delivery in sensor network. Usually most conventional methods determine the optimal coefficients in the cost function without considering the surrounding environment of the node such as the wireless propagation environment or the topological environment. Due to this reason, there are limitations to improve the quality of data delivery such as data delivery ratio and delay of data delivery. To solve this problem, we derive a new cost function using the concept of Partially Connected Neural Network (PCNN) which is modeled according to the input types whether inputs are correlated or uncorrelated. The correlated inputs are connected to the hidden layer of the PCNN in a coupled fashion but the uncoupled inputs are in an uncoupled fashion. We also propose the training technique for finding an optimal weight vector in the link cost function. The link cost function is trained to the direction that the packet transmission success ratio of each node maximizes. In the experimental section, we show that our method outperforms other conventional methods in terms of the quality of data delivery and the energy efficiency.

Recovery the Missing Streamflow Data on River Basin Based on the Deep Neural Network Model

  • Le, Xuan-Hien;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.156-156
    • /
    • 2019
  • In this study, a gated recurrent unit (GRU) network is constructed based on a deep neural network (DNN) with the aim of restoring the missing daily flow data in river basins. Lai Chau hydrological station is located upstream of the Da river basin (Vietnam) is selected as the target station for this study. Input data of the model are data on observed daily flow for 24 years from 1961 to 1984 (before Hoa Binh dam was built) at 5 hydrological stations, in which 4 gauge stations in the basin downstream and restoring - target station (Lai Chau). The total available data is divided into sections for different purposes. The data set of 23 years (1961-1983) was employed for training and validation purposes, with corresponding rates of 80% for training and 20% for validation respectively. Another data set of one year (1984) was used for the testing purpose to objectively verify the performance and accuracy of the model. Though only a modest amount of input data is required and furthermore the Lai Chau hydrological station is located upstream of the Da River, the calculated results based on the suggested model are in satisfactory agreement with observed data, the Nash - Sutcliffe efficiency (NSE) is higher than 95%. The finding of this study illustrated the outstanding performance of the GRU network model in recovering the missing flow data at Lai Chau station. As a result, DNN models, as well as GRU network models, have great potential for application within the field of hydrology and hydraulics.

  • PDF