Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.4
s.310
/
pp.80-87
/
2006
Recently, the distribution and using of the digital multimedia contents are easy by developing the internet application program and related technology. However, the digital signal is easily duplicated and the duplicates have the same quality compare with original digital signal. To solve this problem, there is the multimedia fingerprint which is studied for the protection of copyright. Fingerprinting scheme is a techniques which supports copyright protection to track redistributors of electronic inform on using cryptographic techniques. Only regular user can know the inserted fingerprint data in fingerprinting schemes differ from a symmetric/asymmetric scheme and the scheme guarantee an anonymous before recontributed data. In this paper, we present a new scheme which is the detection of colluded multimedia fingerprint by neural network. This proposed scheme is consists of the anti-collusion code generation and the neural network for the error correction. Anti-collusion code based on BIBD(Balanced Incomplete Block Design) was made 100% collusion code detection rate about the average linear collusion attack, and the hopfield neural network using (n,k)code designing for the error bits correction confirmed that can correct error within 2bits.
Journal of Physiology & Pathology in Korean Medicine
/
v.23
no.4
/
pp.765-771
/
2009
The medical informatics for clustering Sasang types with collected clinical data is important for the personalized medicine, but it has not been thoroughly studied yet. The purpose of this study was to examine the usefulness of neural network data mining algorithm for traditional Korean medicine. We used Kohonen neural network, the Self-Organizing Map (SOM), for the analysis of biomedical information following data pre-processing and calculated the validity index as percentage correctly predicted and type-specific sensitivity. We can extract 12 data fields from 30 after data pre-processing with correlation analysis and latent functional relationship analysis. The profile of Myers-Briggs Type Inidcator and Bio-Impedance Analysis data which are clustered with SOM was similar to that of original measurements. The percentage correctly predicted was 56%, and sensitivity for So-Yang, Tae-Eum and So-Eum type were 56%, 48%, and 61%, respectively. This study showed that the neural network algorithm for clustering Sasang types based on clinical data is useful for the sasang type diagnostic test itself. We discussed the importance of data pre-processing and clustering algorithm for the validity of medical devices in traditional Korean medicine.
Park, Joong-Hoon;Kim, Jin-Tae;Hong, Hyun-Ki;Kim, Soo-Chan;Kim, Deok-Won
Proceedings of the KIEE Conference
/
2006.04a
/
pp.45-47
/
2006
Cleft palate is a congenital deformity condition with separation of the two sides of the lip resulting in nose deformity. Evaluation of surgical corrections and outcome assessments for nose deformity due to the cleft lip depends mainly on doctor's subjective judgment. An objective method for evaluation of the condition and surgical outcome of nose deformity due to the cleft palate is needed. This study aimed at objective assessment of a cleft palate nose deformity condition by analyzing the following parameters obtained from photographic images of a cleft palate patients: (1) angle difference between two nostril axes. (2) center of the nostril and distance between two centers. (3) overlapped area of two nostrils, and (4) the overlapped area ratio of the two nostrils. A regression equation of doctor's grades was obtained using the eight parameters. Three plastic surgeons gave us the grades for the each photographic image by 10 increments with maximum grade of 100. The average reproducibility of the grades given by the three plastic surgeons and the three laymen using the developed program was $10.8{\pm}4.6%$ and $7.4{\pm}1.8%$, respectively. Kappa values representing the degree of consensus of the plastic surgeons and the three laymen were 0.43 and 0.83. respectively. Correlation coefficient of the grades evaluated by the surgeons and obtained by the neural network was 0.798. In conclusion. the developed neural network model provided us better reproducibility and much better consensus than doctor's subjective evaluation in addition to objectiveness and easy application.
Colors of 2D animation characters are generally assigned by art directors' subjective color sense. Even same characters should be colored differently according to the mood of animation scenes. In this study, we introduce the model for automatic color transformation of characters by using neural network. It can not only create automatically colors of characters which are good matched with 2D animation scenes but also reproduce art directors' subjective color sense. Specifically, this neural network model is initially made to learn the patterns of color change between basic colors of characters and colors of characters in various scene. Then if you know basic colors of some characters, you can derive colors of characters under other light source environments using the learned neural network. Subjective ratings(which is adopted to verify the proposed model) by color experts on the automatically transformed colors showed that the colors created by the model tended to be evaluated natural.
The runway visual range affected by fog and so on is one of the important indicators to determine whether aircraft can take off and land at the airport or not. In the case of airports where transportation airplanes are operated, major weather forecasts including the runway visual range for local area have been released and provided to aviation workers for recognizing that. This paper proposes a runway visual range estimation model with a deep neural network applied recently to various fields such as image processing, speech recognition, natural language processing, etc. It is developed and implemented for estimating a runway visual range of local airport with a deep neural network. It utilizes the past actual weather observation data of the applied airfield for constituting the learning of the neural network. It can show comparatively the accurate estimation result when it compares the results with the existing observation data. The proposed model can be used to generate weather information on the airfield for which no other forecasting function is available.
In this paper, we propose facial expression recognition using CNN (Convolutional Neural Network), one of the deep learning technologies. To overcome the disadvantages of existing facial expression databases, various databases are used. In the proposed technique, we construct six facial expression data sets such as 'expressionless', 'happiness', 'sadness', 'angry', 'surprise', and 'disgust'. Pre-processing and data augmentation techniques are also applied to improve efficient learning and classification performance. In the existing CNN structure, the optimal CNN structure that best expresses the features of six facial expressions is found by adjusting the number of feature maps of the convolutional layer and the number of fully-connected layer nodes. Experimental results show that the proposed scheme achieves the highest classification performance of 96.88% while it takes the least time to pass through the CNN structure compared to other models.
The objective of this paper is to implement parallel multi-layer ANN(Artificial Neural Network) simulator based on the mobile agent system which is executed in parallel in the virtual parallel distributed computing environment. The Multi-Layer Neural Network is classified by training session, training data layer, node, md weight in the parallelization-level. In this study, We have developed and evaluated the simulator with which it is feasible to parallel the ANN in the training session and training data parallelization because these have relatively few network traffic. In this results, we have verified that the performance of parallelization is high about 3.3 times in the training session and training data. The great significance of this paper is that the performance of ANN's execution on virtual parallel computer is similar to that of ANN's execution on existing super-computer. Therefore, we think that the virtual parallel computer can be considerably helpful in developing the neural network because it decreases the training time which needs extra-time.
This paper proposes an enhanced skin color-based detection method to find a region of human face in color images. The proposed detection method combines three color spaces, RGB, $YC_bC_r$, YIQ and builds color union histograms of luminance and chrominance components respectively. Combined color union histograms are then fed in to the back-propagation neural network for training and Levenberg-Marquadt algorithm is applied to the iteration process of training. Proposed method with Levenberg-Marquadt algorithm applied to training process of neural network contributes to solve a local minimum problem of back-propagation neural network, one of common methods of training for face detection, and lead to make lower a detection error rate. Further, proposed color-based detection method using combined color union histograms which give emphasis to chrominance components divided from luminance components inputs more confident values at the neural network and shows higher detection accuracy in comparison to the histogram of single color space. The experiments show that these approaches perform a good capability for face region detection, and these are robust to illumination conditions.
In this paper, we propose a novel approach to improve the performance of the Convolutional Neural Network(CNN) word embedding model on top of word2vec with the result of performing like doc2vec in conducting a document classification task. The Word Piece Model(WPM) is empirically proven to outperform other tokenization methods such as the phrase unit, a part-of-speech tagger with substantial experimental evidence (classification rate: 79.5%). Further, we conducted an experiment to classify ten categories of news articles written in Korean by feeding words and document vectors generated by an application of WPM to the baseline and the proposed model. From the results of the experiment, we report the model we proposed showed a higher classification rate (89.88%) than its counterpart model (86.89%), achieving a 22.80% improvement. Throughout this research, it is demonstrated that applying doc2vec in the document classification task yields more effective results because doc2vec generates similar document vector representation for documents belonging to the same category.
We propose Wide Inception ResNet (WIR Net) an optimized neural network architecture as a real-time semantic segmentation method for autonomous driving. The neural network architecture consists of an encoder that extracts features by applying a residual connection and inception module, and a decoder that increases the resolution by using transposed convolution and a low layer feature map. We also improved the performance by applying an ELU activation function and optimized the neural network by reducing the number of layers and increasing the number of filters. The performance evaluations used an NVIDIA Geforce GTX 1080 and TX1 boards to assess the class and category IoU for cityscapes data in the driving environment. The experimental results show that the accuracy of class IoU 53.4, category IoU 81.8 and the execution speed of $640{\times}360$, $720{\times}480$ resolution image processing 17.8fps and 13.0fps on TX1 board.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.