• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.034 seconds

Laser pointer detection using neural network for human computer interaction (인간-컴퓨터 상호작용을 위한 신경망 알고리즘기반 레이저포인터 검출)

  • Jung, Chan-Woong;Jeong, Sung-Moon;Lee, Min-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • In this paper, an effective method to detect the laser pointer on the screen using the neural network algorithm for implementing the human-computer interaction system. The proposed neural network algorithm is used to train the patches without a laser pointer from the input camera images, the trained neural network then generates output values for an input patch from a camera image. If a small variation is perceived in the input camera image, amplify the small variations and detect the laser pointer spot in the camera image. The proposed system consists of a laser pointer, low-price web-camera and image processing program and has a detection capability of laser spot even if the background of computer monitor has a similar color with the laser pointer spot. Therefore, the proposed technique will be contributed to improve the performance of human-computer interaction system.

Design Analysis of Current Density in Lithium Secondary Battery Using Data Mining Techniques (데이터 마이닝을 이용한 리튬 이차전지의 전류밀도 영향인자 분석)

  • Jeong, Dong Ho;Lee, Jongsoo;Choi, Ha-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.677-682
    • /
    • 2014
  • In the present study, a decision tree and artificial neural network were used to determine critical design parameters for lithium ion batteries and compare their performances. First, a design method that used a decision tree-artificial neural network model was used to determine the major design factors among early pole plate design factors that showed nonlinearity. Then, the artificial neural network was used to implement a weighted value analysis of the importance of the design factors and their effect on the current density. The second method involved the use of an artificial neural network model to construct artificial networks without separate determinations of the major early design factors to analyze the connections and weighted values related to the current density.

Modelling land surface temperature using gamma test coupled wavelet neural network

  • Roshni, Thendiyath;Kumari, Nandini;Renji, Remesan;Drisya, Jayakumar
    • Advances in environmental research
    • /
    • v.6 no.4
    • /
    • pp.265-279
    • /
    • 2017
  • The climate change has made adverse effects on land surface temperature for many regions of the world. Several climatic studies focused on different downscaling techniques for climatological parameters of different regions. For statistical downscaling of any hydrological parameters, conventional Neural Network Models were used in common. However, it seems that in any modeling study, uncertainty is a vital aspect when making any predictions about the performance. In this paper, Gamma Test is performed to determine the data length selection for training to minimize the uncertainty in model development. Another measure to improve the data quality and model development are wavelet transforms. Hence, Gamma Test with Wavelet decomposed Feedforward Neural Network (GT-WNN) model is developed and tested for downscaled land surface temperature of Patna Urban, Bihar. The results of GT-WNN model are compared with GT-FFNN and conventional Feedforward Neural Network (FFNN) model. The effectiveness of the developed models is illustrated by Root Mean Square Error and Coefficient of Correlation. Results showed that GT-WNN outperformed the GT-FFNN and conventional FFNN in downscaling the land surface temperature. The land surface temperature is forecasted for a period of 2015-2044 with GT-WNN model for Patna Urban in Bihar. In addition, the significance of the probable changes in the land surface temperature is also found through Mann-Kendall (M-K) Test for Summer, Winter, Monsoon and Post Monsoon seasons. Results showed an increasing surface temperature trend for summer and winter seasons and no significant trend for monsoon and post monsoon season over the study area for the period between 2015 and 2044. Overall, the M-K test analysis for the annual data shows an increasing trend in the land surface temperature of Patna Urban.

Recognition of Car License Plate by Using Dynamical Thresholding and Neural Network with Enhanced Learning Algorithm (동적인 임계화 방법과 개선된 학습 알고리즘의 신경망을 이용한 차량 번호판 인식)

  • Kim, Gwang-Baek;Kim, Yeong-Ju
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.119-128
    • /
    • 2002
  • This paper proposes an efficient recognition method of car license plate from the car images by using both the dynamical thresholding and the neural network with enhanced learning algorithm. The car license plate is extracted by the dynamical thresholding based on the structural features and the density rates. Each characters and numbers from the p]ate is also extracted by the contour tracking algorithm. The enhanced neural network is proposed for recognizing them, which has the algorithm of combining the modified ART1 and the supervised learning method. The proposed method has applied to the real-world car images. The simulation results show that the proposed method has better the extraction rates than the methods with information of the gray brightness and the RGB, respectively. And the proposed method has better recognition performance than the conventional backpropagation neural network.

Performance Comparison between Neural Network Model and Statistical Model for Prediction of Damage Cost from Storm and Flood (신경망 모델과 확률 모델의 풍수해 예측성능 비교)

  • Choi, Seon-Hwa
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.271-278
    • /
    • 2011
  • Storm and flood such as torrential rains and major typhoons has often caused damages on a large scale in Korea and damages from storm and flood have been increasing by climate change and warming. Therefore, it is an essential work to maneuver preemptively against risks and damages from storm and flood by predicting the possibility and scale of the disaster. Generally the research on numerical model based on statistical methods, the KDF model of TCDIS developed by NIDP, for analyzing and predicting disaster risks and damages has been mainstreamed. In this paper, we introduced the model for prediction of damage cost from storm and flood by the neural network algorithm which outstandingly implements the pattern recognition. Also, we compared the performance of the neural network model with that of KDF model of TCDIS. We come to the conclusion that the robustness and accuracy of prediction of damage cost on TCDIS will increase by adapting the neural network model rather than the KDF model.

Automatic Evaluation of Elementary School English Writing Based on Recurrent Neural Network Language Model (순환 신경망 기반 언어 모델을 활용한 초등 영어 글쓰기 자동 평가)

  • Park, Youngki
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.2
    • /
    • pp.161-169
    • /
    • 2017
  • We often use spellcheckers in order to correct the syntactic errors in our documents. However, these computer programs are not enough for elementary school students, because their sentences are not smooth even after correcting the syntactic errors in many cases. In this paper, we introduce an automated method for evaluating the smoothness of two synonymous sentences. This method uses a recurrent neural network to solve the problem of long-term dependencies and exploits subwords to cope with the rare word problem. We trained the recurrent neural network language model based on a monolingual corpus of about two million English sentences. In our experiments, the trained model successfully selected the more smooth sentences for all of nine types of test set. We expect that our approach will help in elementary school writing after being implemented as an application for smart devices.

A Mechanism to Determine Method Location among Classes using Neural Network (신경망을 이용한 클래스 간 메소드 위치 결정 메커니즘)

  • Jung, Young-A.;Park, Young-B.
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.547-552
    • /
    • 2006
  • There have been various cohesion measurements studied considering reference relation among attributes and methods in a class. Generally, these cohesion measurement are camed out in one class. If the range of reference relation considered are extended from one class to two classes, we could find out the reference relation between two classes. Tn this paper, we proposed a neural network to determine the method location. Neural network is effective to predict output value from input data not to be included in training and generalize after training input and output pattern repeatedly. Learning vector is generated with 30-dimensional input vector and one target binary values of method location in a constraint that there are two classes which have less than or equal to 5 attributes and methods The result of the proposed neural network is about 95% in cross-validation and 88% in testing.

Development of a System Predicting Maximum Displacements of Earth Retaining Walls at Various Excavation Stages Using Artificial Neural Network (인공신경망을 이용한 굴착단계별 흙막이벽체의 최대변위 예측시스템 개발)

  • 김홍택;박성원;권영호;김진홍
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.83-97
    • /
    • 2000
  • In the present study, artificial neural network based on the multi-layer perceptron is used and an optimum model is chosen through the process of efficiency evaluation in order to develop a system predicting maximum displacements of the earth retaining walls at various excavation stages. By analyzing the measured field data collected at various urban excavation sites in Korea, factors influencing on the behaviors of the excavation wall are examined. Among the measured data collected, reliable data are further selected on the basis of the performance ratio and are used as a data base. Data-based measurements are also utilized for both teaming and verifying the artificial neural network model. The learning is carried out by using the back-propagation algorithm based on the steepest descent method. Finally, to verify a validity of the formulated artificial neural network system, both the magnitude and the occurring position of the maximum horizontal displacement are predicted and compared with measured data at real excavation sites not included in the teaming process.

  • PDF

A Neural Network Model for Selecting a Piling Method of Building Construction (건축공사 말뚝공법 선정을 위한 신경망 모델 개발)

  • Cheon Bong-Ho;Koo Choong-Wan;Um Ik-Joon;Koo Kyo-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.317-322
    • /
    • 2004
  • As a construction project in urban area tends to be high-rise and huge, the importance of the project's underground work, in terms of the cost and the schedule, is gradually increasing. It's extremely significant to choose a proper filing method, at the stage of underground work. However, in piling work many change orders have been occurred since a piling method is experientially selected based on uncertain information and many earth factors to consider. It has effects on the cost and the schedule of the project. In this study, we have suggested a decision model for piling method that can be used to determine and verify the suitable piling method in design and pre-construction phase of a project. Based on historical data, a neural network model has already proven to be efficient. The tests of the model for selecting a suitable piling method have progressed exactly with the data of 150 piling works which were done room 2000 to 2004 in Korea. The optimization or the developed neural network model has progressed with the data for teaming. The validity of the neural network model has been verified.

  • PDF

Design of a Dual Network based Neural Architecture for a Cancellation of Monte Carlo Rendering Noise (몬테칼로 렌더링 노이즈 제거를 위한 듀얼 신경망 구조 설계)

  • Lee, Kwang-Yeob
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1366-1372
    • /
    • 2019
  • In this paper, we designed a revised neural network to remove the Monte Carlo Rendering noise contained in the ray tracing graphics. The Monte Carlo Rendering is the best way to enhance the graphic's realism, but because of the need to calculate more than thousands of light effects per pixel, rendering processing time has increased rapidly, causing a major problem with real-time processing. To improve this problem, the number of light used in pixels is reduced, where rendering noise occurs and various studies have been conducted to eliminate this noise. In this paper, a deep learning is used to remove rendering noise, especially by separating the rendering image into diffuse and specular light, so that the structure of the dual neural network is designed. As a result, the dual neural network improved by an average of 0.58 db for 64 test images based on PSNR, and 99.22% less light compared to reference image, enabling real-time race-tracing rendering.