• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.036 seconds

Design of Controller for Nonlinear Multivariable System Using Neural Network Sliding Surface (신경망 슬라이딩 곡면을 이용한 비선형 다변수 시스템의 제어기 설계)

  • Ku, Gi-Jun;Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2634-2638
    • /
    • 2009
  • The variable structure control(VSC) with sliding mode is the discontinuous control law in leads to undesirable chattering in practice. As a method solving this problem, in this paper, we propose a scheme of the VSC with neural network sliding surface. A neural network sliding surface with boundary layer is employed to solve discontinuous control law. The proposed controller can eliminate the chattering problem of the conventional VSC. The effectiveness of the proposed control scheme is verified by simulation results.

CCTV Object Detection with Background Subtraction and Convolutional Neural Network (배경 차분과 CNN 기반의 CCTV 객체 검출)

  • Kim, Young-Min;Lee, Jiyoung;Yoon, Illo;Han, Taekjin;Kim, Chulyeon
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.151-156
    • /
    • 2018
  • In this paper, a method to classify objects in outdoor CCTV images using Convolutional Neural Network(CNN) and background subtraction is proposed. Object candidates are extracted using background subtraction and they are classified with CNN to detect objects in the image. At the end, computation complexity is highly reduced in comparison to other object detection algorithms. A database is constructed by filming alleys and playgrounds, places where crime occurs mainly. In experiments, different image sizes and experimental settings are tested to construct a best classifier detecting person. And the final classification accuracy became 80% for same camera data and 67.5% for a different camera.

Measurement Method of Height of White Light Scanning Interferometer using Deep Learning (Deep Learning을 사용한 백색광 주사 간섭계의 높이 측정 방법)

  • Baek, Sang Hyune;Hwang, Wonjun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.864-875
    • /
    • 2018
  • In this paper, we propose a measurement method for height of white light scanning interferometer using deep learning. In order to measure the fine surface shape, a three-dimensional surface shape measurement technique is required. A typical example is a white light scanning interferometer. In order to calculate the surface shape from the measurement image of the white light scanning interferometer, the height of each pixel must be calculated. In this paper, we propose a neural network for height calculation and use virtual data generation method to train this neural network. The accuracy was measured by inputting 57 actual data to the neural network which had completed the learning. We propose two new functions for accuracy measurement. We have analyzed the cases where there are many errors among the accuracy calculation values, and it is confirmed that there are many errors when there is no interference fringe or outside the learned range. We confirmed that the proposed neural network works correctly in most cases. We expect better results if we improve the way we generate learning data.

New Usage of SOM for Genetic Algorithm (유전 알고리즘에서의 자기 조직화 신경망의 활용)

  • Kim, Jung-Hwan;Moon, Byung-Ro
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.440-448
    • /
    • 2006
  • Self-Organizing Map (SOM) is an unsupervised learning neural network and it is used for preserving the structural relationships in the data without prior knowledge. SOM has been applied in the study of complex problems such as vector quantization, combinatorial optimization, and pattern recognition. This paper proposes a new usage of SOM as a tool for schema transformation hoping to achieve more efficient genetic process. Every offspring is transformed into an isomorphic neural network with more desirable shape for genetic search. This helps genes with strong epistasis to stay close together in the chromosome. Experimental results showed considerable improvement over previous results.

Prediction Performance of Hybrid Least Square Support Vector Machine with First Principle Knowledge (First Principle을 결합한 최소제곱 Support Vector Machine의 예측 능력)

  • 김병주;심주용;황창하;김일곤
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.744-751
    • /
    • 2003
  • A hybrid least square Support Vector Machine combined with First Principle(FP) knowledge is proposed. We compare hybrid least square Support Vector Machine(HLS-SVM) with early proposed models such as Hybrid Neural Network(HNN) and HNN with Extended Kalman Filter(HNN-EKF). In the training and validation stage HLS-SVM shows similar performance with HNN-EKF but better than HNN, whereas, in the testing stage, it shows three times better than HNN-EKF, hundred times better than HNN model.

The Speed Control of Induction Motor using Automatic Neural Network Gain Regulator (신경망이득 자동조절기를 이용한 유도모터 속도 제어)

  • Park, Wal-Seo;Kim, Yong-Wook;Lee, Sung-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.53-57
    • /
    • 2006
  • PID controller is widely uesd as automatic equipment for industry. However when a system has various characters of intermittence or continuance, a new parameter decision for accurate control is a hard task. As method of solving this problem, in this paper, a Neural Network gain automatic regulator as PID controller functions is presented. A property feedback control gain of system is decided by a rule of Delta learning. The function of proposed automatic Neural Network gain regulator is verified by speed control experiment results of Induction Motor.

Control Method using Neural Network of Hybrid Learning Rule (혼합형 학습규칙 신경 회로망을 이용한 제어 방식)

  • 임중규;이현관;권성훈;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.370-374
    • /
    • 1999
  • The proposed algorithm used the Hybrid teaming rule in the input and hidden layer, and Back-Propagation teaming rule in the hidden and output layer. From the results of simulation of tracking control with one link manipulator as a plant, we verify the usefulness of the proposed control method to compare with common direct adaptive neural network control method; proposed hybrid teaming rule showed faster loaming time faster settling time than the direct adaptive neural network using Back-propagation algorithm. Usefulness of the proposed control method is that it is faster the learning time and settling time than common direct adaptive neural network control method.

  • PDF

A Study on the Speech Recognition of Korean Phonemes Using Recurrent Neural Network Models (순환 신경망 모델을 이용한 한국어 음소의 음성인식에 대한 연구)

  • 김기석;황희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.782-791
    • /
    • 1991
  • In the fields of pattern recognition such as speech recognition, several new techniques using Artifical Neural network Models have been proposed and implemented. In particular, the Multilayer Perception Model has been shown to be effective in static speech pattern recognition. But speech has dynamic or temporal characteristics and the most important point in implementing speech recognition systems using Artificial Neural Network Models for continuous speech is the learning of dynamic characteristics and the distributed cues and contextual effects that result from temporal characteristics. But Recurrent Multilayer Perceptron Model is known to be able to learn sequence of pattern. In this paper, the results of applying the Recurrent Model which has possibilities of learning tedmporal characteristics of speech to phoneme recognition is presented. The test data consist of 144 Vowel+ Consonant + Vowel speech chains made up of 4 Korean monothongs and 9 Korean plosive consonants. The input parameters of Artificial Neural Network model used are the FFT coefficients, residual error and zero crossing rates. The Baseline model showed a recognition rate of 91% for volwels and 71% for plosive consonants of one male speaker. We obtained better recognition rates from various other experiments compared to the existing multilayer perceptron model, thus showed the recurrent model to be better suited to speech recognition. And the possibility of using Recurrent Models for speech recognition was experimented by changing the configuration of this baseline model.

A Hybrid Neural Network Framework for Hour-Ahead System Marginal Price Forecasting (하이브리드 신경회로망을 이용한 한시간전 계통한계가격 예측)

  • Jeong, Sang-Yun;Lee, Jeong-Kyu;Park, Jong-Bae;Shin, Joong-Rin;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.162-164
    • /
    • 2005
  • This paper presents an hour-ahead System Marginal Price (SMP) forecasting framework based on a neural network. Recently, the deregulation in power industries has impacted on the power system operational problems. The bidding strategy of market participants in energy market is highly dependent on the short-term price levels. Therefore, short-term SMP forecasting is a very important issue to market participants to maximize their profits. and to market operator who may wish to operate the electricity market in a stable sense. The proposed hybrid neural network is composed of tow parts. First part of this scheme is pattern classification to input data using Kohonen Self-Organizing Map (SOM) and the second part is SMP forecasting using back-propagation neural network that has three layers. This paper compares the forecasting results using classified input data and unclassified input data. The proposed technique is trained, validated and tested with historical date of Korea Power Exchange (KPX) in 2002.

  • PDF

Intrusion Detection: Supervised Machine Learning

  • Fares, Ahmed H.;Sharawy, Mohamed I.;Zayed, Hala H.
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.305-313
    • /
    • 2011
  • Due to the expansion of high-speed Internet access, the need for secure and reliable networks has become more critical. The sophistication of network attacks, as well as their severity, has also increased recently. As such, more and more organizations are becoming vulnerable to attack. The aim of this research is to classify network attacks using neural networks (NN), which leads to a higher detection rate and a lower false alarm rate in a shorter time. This paper focuses on two classification types: a single class (normal, or attack), and a multi class (normal, DoS, PRB, R2L, U2R), where the category of attack is also detected by the NN. Extensive analysis is conducted in order to assess the translation of symbolic data, partitioning of the training data and the complexity of the architecture. This paper investigates two engines; the first engine is the back-propagation neural network intrusion detection system (BPNNIDS) and the second engine is the radial basis function neural network intrusion detection system (BPNNIDS). The two engines proposed in this paper are tested against traditional and other machine learning algorithms using a common dataset: the DARPA 98 KDD99 benchmark dataset from International Knowledge Discovery and Data Mining Tools. BPNNIDS shows a superior response compared to the other techniques reported in literature especially in terms of response time, detection rate and false positive rate.