• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.04 seconds

A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines (S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구)

  • 윤마루;박승범;선우명호;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.

Comparison of Latin Hypercube Sampling and Simple Random Sampling Applied to Neural Network Modeling of HfO2 Thin Film Fabrication

  • Lee, Jung-Hwan;Ko, Young-Don;Yun, Il-Gu;Han, Kyong-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.210-214
    • /
    • 2006
  • In this paper, two sampling methods which are Latin hypercube sampling (LHS) and simple random sampling were. compared to improve the modeling speed of neural network model. Sampling method was used to generate initial weights and bias set. Electrical characteristic data for $HfO_2$ thin film was used as modeling data. 10 initial parameter sets which are initial weights and bias sets were generated using LHS and simple random sampling, respectively. Modeling was performed with generated initial parameters and measured epoch number. The other network parameters were fixed. The iterative 20 minimum epoch numbers for LHS and simple random sampling were analyzed by nonparametric method because of their nonnormality.

Shear lag prediction in symmetrical laminated composite box beams using artificial neural network

  • Chandak, Rajeev;Upadhyay, Akhil;Bhargava, Pradeep
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.77-89
    • /
    • 2008
  • Presence of high degree of orthotropy enhances shear lag phenomenon in laminated composite box-beams and it persists till failure. In this paper three key parameters governing shear lag behavior of laminated composite box beams are identified and defined by simple expressions. Uniqueness of the identified key parameters is proved with the help of finite element method (FEM) based studies. In addition to this, for the sake of generalization of prediction of shear lag effect in symmetrical laminated composite box beams a feed forward back propagation neural network (BPNN) model is developed. The network is trained and tested using the data base generated by extensive FEM studies carried out for various b/D, b/tF, tF/tW and laminate configurations. An optimum network architecture has been established which can effectively learn the pattern. Computational efficiency of the developed ANN makes it suitable for use in optimum design of laminated composite box-beams.

Predicting Korea Composite Stock Price Index Movement Using Artificial Neural Network (인공신경망을 이용한 한국 종합주가지수의 방향성 예측)

  • 박종엽;한인구
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.103-121
    • /
    • 1995
  • This study proposes a artificial neural network method to predict the time to buy and sell the stocks listed on the Korea Composite Stock Price Index(KOSPI). Four types (NN1, NN2, NN3, NN4) of independent networks were developed to predict KOSPIs up/down direction after four weeks. These networks have a difference only in the length of learning period. NN5 - arithmetic average of four networks outputs - shows an higher accuracy than other network types and Multiple Linear Regression (MLR), and buying and selling simulation using systems outputs produces higher reture than buy-and-hold strategy.

  • PDF

Computational Neural Networks (연산회로 신경망)

  • 강민제
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.80-86
    • /
    • 2002
  • A neural network structure which is able to perform the operations of analog addition and linear equation is proposed. The network employs Hopfkeld's model of a neuron with the connection elements specified on the basis of an analysis of the energy function. The analog addition network and linear equation network are designed by using Hopfield's A/D converter and linear programming respectively. Simulation using Pspice has shown convergence predominently to the correct global minima.

  • PDF

Short Term Load Forecasting Using The Kohonen Neural Network (코호넨 신경망을 이용한 단기 전력수요 예측)

  • Cho, Sung-Woo;Hwang, Kab-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.447-449
    • /
    • 1996
  • This paper describes an algorithm for short term load forecasting using the Kohonen neural network. Single layer Kohonen neural network presents a lot of advantageous features for practical application. It takes less training time compared to other networks such as BP network, and moreover, its self organized feature can amend the distorted data. The originality of proposed approach is to use a Kohonen map toclassify data representing load patterns and to use directly the information stored in the weight vectors of the Kohonen map to pridict the load. Proposed method was tested with KEPCO hourly record(1993-1995) show better forecasting results compared with conventional exponential smoothing method.

  • PDF

Tensile Properties Estimation Method Using Convolutional LSTM Model

  • Choi, Hyeon-Joon;Kang, Dong-Joong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.43-49
    • /
    • 2018
  • In this paper, we propose a displacement measurement method based on deep learning using image data obtained from tensile tests of a material specimen. We focus on the fact that the sequential images during the tension are generated and the displacement of the specimen is represented in the image data. So, we designed sample generation model which makes sequential images of specimen. The behavior of generated images are similar to the real specimen images under tensile force. Using generated images, we trained and validated our model. In the deep neural network, sequential images are assigned to a multi-channel input to train the network. The multi-channel images are composed of sequential images obtained along the time domain. As a result, the neural network learns the temporal information as the images express the correlation with each other along the time domain. In order to verify the proposed method, we conducted experiments by comparing the deformation measuring performance of the neural network changing the displacement range of images.

Predicting the Saudi Student Perception of Benefits of Online Classes during the Covid-19 Pandemic using Artificial Neural Network Modelling

  • Beyari, Hasan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2022
  • One of the impacts of Covid-19 on education systems has been the shift to online education. This shift has changed the way education is consumed and perceived by students. However, the exact nature of student perception about online education is not known. The aim of this study was to understand the perceptions of Saudi higher education students (e.g., post-school students) about online education during the Covid-19 pandemic. Various aspects of online education including benefits, features and cybersecurity were explored. The data collected were analysed using statistical techniques, especially artificial neural networks, to address the research aims. The key findings were that benefits of online education was perceived by students with positive experience or when ensured of safe use of online platforms without the fear cyber security breaches for which recruitment of a cyber security officer was an important predictor. The issue of whether perception of online education as a necessity only for Covid situation or a lasting option beyond the pandemic is a topic for future research.

Denoising neural network to improve the foam effect via screen projection method (스크린 투영 방식의 거품 효과를 개선하기 위한 노이즈 제거 신경망)

  • Kim, Jong-Hyun;Kim, Donghui;Kim, Soo Kyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.663-666
    • /
    • 2021
  • 본 논문에서는 바다와 같은 스케일이 큰 장면인 물 시뮬레이션에서 표현되는 거품 효과(Foam effects)를 노이즈 없이 디테일하게 표현할 수 있는 프레임워크를 소개한다. 거품이 생성될 위치와 거품 입자의 이류는 기존의 접근법인 스크린 투영 방법을 통해 계산한다. 이 과정에서 중요한 것이 투영맵이지만 이산화된 스크린 공간에 운동량을 투영하는 과정에서 노이즈가 발생한다. 본 논문에서는 노이즈 제거 신경망(Denoising neural network)을 활용하여 이 문제를 효율적으로 풀어낸다. 투영맵을 통해 거품이 생성될 영역이 선별되면 2D공간을 3D공간으로 역변환(Inverse transformation)하여 거품 입자를 생성한다. 결과적으로 깔끔한 거품 효과뿐만 아니라, 노이즈 제거 과정으로 인해 소실되는 거품 없이 안정적으로 거품 효과를 만들어냈다.

  • PDF

A Study on Estimation of a Mobile Robot's Position Using Neural Network (신경회로망을 이용한 이동로보트의위치 추정에 관한 연구)

  • Kim, Jae-H;Lee, Jae-C;Cho, Hyung-S
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.141-151
    • /
    • 1993
  • For navigation of a mobile robot, it is one of the essential tasks to find out its current position. Dead reckonining is the most frequently used method to estimate its position. Hpwever conventional dead reckoner is prone to give us false information on the robot position especially when the wheels are slipping. This paper proposes an improved dead reckoning scheme using neural networks. The network detects the instance of wheel slopping and estimates the linear velocity of the wheel; thus it calculates current position and heading angle of a mobile robot. The structure and variables of the nerual network are chosen in consideration of slip motion characteristics. A series of experiments are performed to train the networks and to investigate the performance of the improved dead reckoning system.

  • PDF