• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.036 seconds

Predicting Method of Rosidual Stress Using Artificial Neural Network In $CO_2$ Are Weldling (인공신경망을 이용한 탄산가스 아크용접의 잔류응력 예측)

  • 조용준;이세현;엄기원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.482-487
    • /
    • 1993
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermomechanical analysis has been performed for the CO $_{2}$ Arc Welding using the finite element method. The validity of the above results is demonstrated by experimental elastic stress relief method which is called Holl Drilling Method. The first part of numarical analysis performs a three-dimensional transient heat transfer anslysis, and the second part then uses results of the first part and performs a three-dimensional transient thermo-clasto-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method were used to train a backpropagation neural network to predict residual stress. Architecturally, the finite element method were used to train a backpropagation voltage and the current, a hidden layer to accommodate failure mechanism mapping, and an output layer for residual stress. The trained network was then applied to the prediction of residual stress in the four specimens. The results of predicted residual stress have been very encouraging.

  • PDF

Decomposition Analysis of Time Series Using Neural Networks (신경망을 이용한 시계열의 분해분석)

  • Jhee, Won-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.111-124
    • /
    • 1999
  • This evapaper is toluate the forecasting performance of three neural network(NN) approaches against ARIMA model using the famous time series analysis competition data. The first NN approach is to analyze the second Makridakis (M2) Competition Data using Multilayer Perceptron (MLP) that has been the most popular NN model in time series analysis. Since it is recently known that MLP suffers from bias/variance dilemma, two approaches are suggested in this study. The second approach adopts Cascade Correlation Network (CCN) that was suggested by Fahlman & Lebiere as an alternative to MLP. In the third approach, a time series is separated into two series using Noise Filtering Network (NFN) that utilizes autoassociative memory function of neural network. The forecasts in the decomposition analysis are the sum of two prediction values obtained from modeling each decomposed series, respectively. Among the three NN approaches, Decomposition Analysis shows the best forecasting performance on the M2 Competition Data, and is expected to be a promising tool in analyzing socio-economic time series data because it reduces the effect of noise or outliers that is an impediment to modeling the time series generating process.

  • PDF

Ubiquitous Networking based Intelligent Monitoring and Fault Diagnosis Approach for Photovoltaic Generator Systems (태양광 발전 시스템을 위한 유비쿼터스 네트워킹 기반 지능형 모니터링 및 고장진단 기술)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1673-1679
    • /
    • 2010
  • A photovoltaic (PV) generator is significantly regarded as one important alternative of renewable energy systems recently. Fault detection and diagnosis of engineering dynamic systems is a fundamental issue to timely prevent unexpected damages in industry fields. This paper presents an intelligent monitoring approach and fault detection technique for PV generator systems by means of artificial neural network and statistical signal detection theory. We devise a multi-Fourier neural network model for representing dynamics of PV systems and apply a general likelihood ratio test (GLRT) approach for investigating our decision making algorithm in fault detection and diagnosis. We make use of a test-bed of ubiquitous sensor network (USN) based PV monitoring systems for testing our proposed fault detection methodology. Lastly, a real-time experiment is accomplished for demonstrating its reliability and practicability.

Improvement of Cutting Conditions in End-milling Using Deep-layered Neural Networks (심층 신경회로망을 이용한 엔드밀 가공의 절삭 조건 개선)

  • Lee, Sin-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.402-409
    • /
    • 2017
  • Selection of optimal cutting conditions is important for improving productivity and implementing efficient process control in metal machining. In this study, improvement of cutting conditions in machining using end-mills is studied by using deep-layered neural networks, which comprise an input layer, output layer, and two hidden layers. System networks are designed with inputs as cutting conditions, and they output the cutting force. A pseudo-inverse network is designed that has the adjustable cutting condition as output and cutting force and other cutting conditions as input. The combination of the system network and pseudo-inverse network enables selection or improvement of cutting conditions that results in the expected cutting force.

A Study on the Diagnosis of Appendicitis using Fuzzy Neural Network (퍼지 신경망을 이용한 맹장염진단에 관한 연구)

  • 박인규;신승중;정광호
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.253-257
    • /
    • 2000
  • the objective of this study is to design and evaluate a methodology for diagnosing the appendicitis in a fuzzy neural network that integrates the partition of input space by fuzzy entropy and the generation of fuzzy control rules and learning algorithm. In particular the diagnosis of appendicitis depends on the rule of thumb of the experts such that it associates with the region, the characteristics, the degree of the ache and the potential symptoms. In this scheme the basic idea is to realize the fuzzy rle base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by back propagation learning rule. To eliminate the number of the parameters of the rules, the output of the consequences of the control rules is expressed by the network's connection weights. As a result we obtain a method for reducing the system's complexities. Through computer simulations the effectiveness of the proposed strategy is verified for the diagnosis of appendicitis.

  • PDF

Static Switch Controller Based on Artificial Neural Network in Micro-Grid Systems

  • Saeedimoghadam, Mojtaba;Moazzami, Majid;Nabavi, Seyed. M.H.;Dehghani, Majid
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1822-1831
    • /
    • 2014
  • Micro-grid is connected to the main power grid through a static switch. One of the critical issues in micro-grids is protection which must disconnect the micro-grid from the network in short-circuit contingencies. Protective methods of micro-grid mainly follow the model of distribution system protection. This protection scheme suffers from improper operation due to the presence of single-phase loads, imbalance of three-phase loads and occurrence of power swings in micro-grid. In this paper, a new method which prevents from improper performance of static micro-grid protection is proposed. This method works based on artificial neural network (ANN) and able to differentiate short circuit from power swings by measuring impedance and the rate of impedance variations in PCC bus. This new technique provides a protective system with higher reliability.

A Spatiotemporal Parallel Processing Model for the MLP Neural Network (MLP 신경망을 위한 시공간 병렬처리모델)

  • Kim Sung-Oan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.95-102
    • /
    • 2005
  • A Parallel Processing model by considering a spatiotemporal parallelism is presented for the training procedure of the MLP neural network. We tried to design the flexible Parallel Processing model by simultaneously applying both of the training-set decomposition for a temporal parallelism and the network decomposition for a spatial parallelism. The analytical Performance evaluation model shows that when the problem size is extremely large, the speedup of each implementation depends, in the extreme, on whether the problem size is pattern-size intensive or pattern-quantify intensive.

  • PDF

Shape Identification of Wear Debris with Neural Network (마멸분 형태식별을 위한 신경회로망의 적용)

  • 조연상;박일현;박흥식;전태옥
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.25-32
    • /
    • 1997
  • The neural network was applied to identify wear debris generated from the lubricated machine moving surface. The wear test was carried out under different experimental conditions. In order to describe characteristics of debris of various shapes and sizes. The four parameter(50% volumetric diameter, aspect, roundness and reflec- tivity) of wear debris are used as inputs to the network and learned the friction condition of five values (material 3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameter learned. The three kinds of the wear debris had a different pattern characteristic and recognized the friction condition and materials very well by neural network.

  • PDF

Classification of Pathological Voice from ARS using Neural Network (신경회로망을 이용한 ARS 장애음성의 식별에 관한 연구)

  • Jo, C.W.;Kim, K.I.;Kim, D.H.;Kwon, S.B.;Kim, K.R.;Kim, Y.J.;Jun, K.R.;Wang, S.G.
    • Speech Sciences
    • /
    • v.8 no.2
    • /
    • pp.61-71
    • /
    • 2001
  • Speech material, which is collected from ARS(Automatic Response System), was analyzed and classified into disease and non-disease state. The material include 11 different kinds of diseases. Along with ARS speech, DAT(Digital Audio Tape) speech is collected in parallel to give the bench mark. To analyze speech material, analysis tools, which is developed local laboratory, are used to provide an improved and robust performance to the obtained parameters. To classify speech into disease and non-disease class, multi-layered neural network was used. Three different combinations of 3, 6, 12 parameters are tested to obtain the proper network size and to find the best performance. From the experiment, the classification rate of 92.5% was obtained.

  • PDF

Hybrid multiple component neural netwrok design and learning by efficient pattern partitioning method (효과적인 패턴분할 방법에 의한 하이브리드 다중 컴포넌트 신경망 설계 및 학습)

  • 박찬호;이현수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.70-81
    • /
    • 1997
  • In this paper, we propose HMCNN(hybrid multiple component neural networks) that enhance performance of MCNN by adapting new pattern partitioning algorithm which can cluster many input patterns efficiently. Added neural network performs similar learning procedure that of kohonen network. But it dynamically determine it's number of output neurons using algorithms that decide self-organized number of clusters and patterns in a cluster. The proposed network can effectively be applied to problems of large data as well as huge networks size. As a sresutl, proposed pattern partitioning network can enhance performance results and solve weakness of MCNN like generalization capability. In addition, we can get more fast speed by performing parallel learning than that of other supervised learning networks.

  • PDF