• Title/Summary/Keyword: neural network.

Search Result 11,770, Processing Time 0.036 seconds

Forecasting the Demand of Railroad Traffic using Neural Network (신경망을 이용한 철도 수요 예측)

  • Shin, Young-Geun;Jung, Won-Gyo;Park, Sang-Sung;Jang, Dong-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1931-1936
    • /
    • 2007
  • Demand forecasting for railroad traffic is fairly important to establish future policy and plan. The future demand of railroad traffic can be predicted by analyzing the demand of air, marine and bus traffic which influence the demand of railroad traffic. In this study, forecasting the demand of railroad traffic is implemented through neural network using the demand of air, marine and bus traffic. Estimate accuracy of the demand of railroad traffic was shown about 84% through neural net model proposed.

  • PDF

Path control for a mobile robot using neural network (신경 회로 이론을 이용한 이동 로보트의 경로 제어에 관한 연구)

  • 신철균;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.710-715
    • /
    • 1990
  • This paper presents a path control method for mobile robot using neural network and a systematic method for the kinematic and dynamic modelling of a mobile robot. The robot finds its path deviation by taking the signals of an optical array sensor and determined its moving behaviors using neural net control method. A robot can be taught behaviors by changing the given patterns, in this work, Back Propagation rule is used as a learning method.

  • PDF

Hybrid position/force controller design of the robot manipulator using neural network (신경 회로망을 이용한 로보트 매니퓰레이터의 Hybrid 위치/힘 제어기의 설계)

  • 조현찬;전홍태;이홍기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.24-29
    • /
    • 1990
  • In this paper ,ie propose a hybrid position/force controller of a robot manipulator using double-layer neural network. Each layer is constructed from inverse dynamics and Jacobian transpose matrix, respectively. The weighting value of each neuron is trained by using a feedback force as an error signal. If the neural networks are sufficiently trained it does not require the feedback-loop with error signals. The effectiveness of the proposed hybrid position/force controller is demonstrated by computer simulation using a PUMA 560 manipulator.

  • PDF

Design of ECG Pattern Classification System Using Fuzzy-Neural Network (퍼지-뉴럴 네트워크를 이용한 심전도 패턴 분류시스템 설계)

  • 김민수;이승로;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.273-276
    • /
    • 2002
  • This paper has design of ECG pattern classification system using decision of fuzzy IF-THEN rules and neural network. each fuzzy IF-THEN rule in our classification system has antecedent lingustic values and a single consequent class. we use a fuzzy reasoning method based on a single winner rule in the classification phase. this paper in, the MIT/BIH arrhythmia database for the source of input signal is used in order to evaluate the performance of the proposed system. From the simulation results, we can effectively pattern classification by application of learned from neural networks.

  • PDF

Neural Network Modelling and Computer Simulation of the Local Circuits of the Outer Plexiform Layer in a Vertebrate Retina (망막 외망층의 국부회로에 대한 신경망 모델 및 컴퓨터 모의실험)

  • 이일병
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 1988
  • This paper describes a neural network modelling of a vertebrate retina using a discrete-time and discrete-space approach based on neuro-anatomical data, and the computer simulations of the model which approximate the frog/amphibian negro-physiological data. It then compares them and describes how such a model can be beneficially used for confirming the hypothesis of a given neural system and further predict yet unknown experimental data.

  • PDF

Speed-Sensorless Vector Control of an Induction Motor Using Neural Network (신경망을 이용한 유도 전동기의 센서리스 속도제어)

  • Kim, Jung-Gon;Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2149-2151
    • /
    • 2002
  • In this paper, a novel speed estimation method of an induction motor using neural networks(NNs) is presented. The NN speed estimator is trained online by using the error backpropagation algorithm, and the training starts simultaneously with the induction motor working. The neural network based vector controller has the advantage of robustness against machine parameter variation. The simulation results using Matlab/Simulink verify the useful of the proposed method.

  • PDF

퍼지신경망에 의한 퍼지회귀분석 : 품질평가 문제에의 응용

  • 권기택
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1996.10a
    • /
    • pp.211-216
    • /
    • 1996
  • This paper propose a fuzzy regression method using fuzzy neural networks when a membership value is attached to each input-output pair. First, an architecture of fuzzy nerual networks with fuzzy weights and fuzzy biases is shown. Next a cost function is defined using the fuzzy output from the fuzzy neural network and the corresponding target output with a membership value.A learning algorithm is derived from the cost function. The derived learning algorithm trains the fuzzy neural network so that the level set of the fuzzy output includes the target output. Last, the proposed method is applied to the quality evaluation problem of injection molding.

Sensorless Speed Control of IPMSM Drive with ANN-based (ANN에 의한 IPMSM의 센서리스 속도제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.4
    • /
    • pp.154-160
    • /
    • 2003
  • This paper is proposed a ANN-based rotor position and speed estimation method for IPMSM by measuring the currents. Because the proposed estimator treats the estimated motor speed as the weights, it is possible to estimate motor speed to adapt back propagation algorithm with 2 layered neural network. The proposed control algorithm is applied to IPMSM drive system. The operating characteristics controlled by neural networks are examined in detail.

Adaptive Control of Non-linearity Dynamic System using DNU (DNU에 의한 비선형 동적시스템의 적응제어)

  • Cho, Hyeon-Seob;Kim, Hee-Sook
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.533-536
    • /
    • 1998
  • The intent of this paper is to describe a neural network structure called dynamic neural processor(DNP), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the DNP, are described. Computer simulations are provided to demonstrate the effectiveness of the proposed learning using the DNP.

  • PDF

Neural Network Algorithm Application to Auto-tuning of Dynamic Systems (동적시스템의 자동동조를 위한 신경망 알고리즘 응용)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.186-190
    • /
    • 2006
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF