• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.046 seconds

A study on deburring task of robot arm using neural network (신경망을 이용한 ROBOT ARM의 디버링(Deburring) 작업에 관한 연구)

  • 주진화;이경문;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.139-142
    • /
    • 1996
  • This paper presents a method of controlling contact force for deburring tasks. The cope with the nonlinearities and time-varying properties of the robot and the environment, a neural network control theory is applied to design the contact force control system. We show that the contact force between the hand and the contacting surface can be controlled by adjusting the command velocity of a robot hand, which is accomplished by the modeling of a robot and the environment as Mass-Spring-Damper system. Simulation results are shown.

  • PDF

An Ergonomics Approach by Neural Network (신경회로망을 이용한 인간공학적 접근)

  • 제종식
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.3
    • /
    • pp.41-45
    • /
    • 1998
  • In measuring human body, the present method involves actual measuring of the subject and analysis of the measured value, In this Paper study set up the purpose of analysing & comparing the exiting data by means of Neural Networks, so that can be virtually used as various analysing materials hence forth.

  • PDF

Nonlinear Dynamic Manipulator Control Using DNP Controller (DNP 제어기에 의한 비선형 동적 매니퓰레이터 제어)

  • Cho, Hyeon-Seob;Kim, Hee-Sook;Ryu, In-Ho;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.764-767
    • /
    • 1999
  • In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed. Also, the architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

  • PDF

Design of Input-Output Feedback Linearization Controller using Neural Network (신경회로망을 이용한 입력-출력 피드백 선형화 제어기 설계)

  • Cho, Gyu-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.936-938
    • /
    • 1999
  • In this Paper, the design of a feedback linearization controller using multilayer neural network is proposed. The Proposed feedback linearization control scheme is designed by finding Lie derivatives from an identified neural networks. Lie derivatives are expressed as a combination of weights and neuron outputs. The proposed method is applied to an antenna arm problem and the simulation results show performance comparisons between the ordinary feedback linearization and the Proposed method.

  • PDF

Identification of Finite Automata Using Recurrent Neural Networks

  • Won, Sung-Hwan;Park, Cheol-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.667-668
    • /
    • 2008
  • This paper demonstrates that the recurrent neural networks can be used successfully for the identification of finite automata (FAs). A new type of recurrent neural network (RNN) is proposed and the offline training algorithm, regulated Levenberg-Marquadt (LM) algorithm, for the network is developed. Simulation result shows that the identification and the extraction of FAs are practically achievable.

  • PDF

Transformer Differential Relay by Using Neural-Fuzzy System

  • Kim, Byung Whan;Masatoshi, Nakamura
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.157.2-157
    • /
    • 2001
  • This paper describes the synergism of Artificial Neural Network and Fuzzy Logic based approach to improve the reliability of transformer differential protection, the conventional transformer differential protection commonly used a harmonic restraint principle to prevent a tripping from inrush current during initial transformer´s energization but such a principle can not performs the best optimization on tripping time. Furthermore, in some cases there may be false operation such as during CT saturation, high DC offset or harmonic containing in the line. Therefore an artificial neural network and fuzzy logic has been proposed to improve reliability of the transformer protection relay. By using EMTP-ATP the power transformer is modeled, all currents flowing ...

  • PDF

Predicting the 2-dimensional airfoil by using machine learning methods

  • Thinakaran, K.;Rajasekar, R.;Santhi, K.;Nalini, M.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.291-304
    • /
    • 2020
  • In this paper, we develop models to design the airfoil using Multilayer Feed-forward Artificial Neural Network (MFANN) and Support Vector Regression model (SVR). The aerodynamic coefficients corresponding to series of airfoil are stored in a database along with the airfoil coordinates. A neural network is created with aerodynamic coefficient as input to produce the airfoil coordinates as output. The performance of the models have been evaluated. The results show that the SVR model yields the lowest prediction error.

A neural network controller based on forward modeling and indirect learning (순방향 모델링과 간접학습에 의한 신경망제어기)

  • 이부환;이인수;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.218-223
    • /
    • 1992
  • This paper describes a learning method of neural network controllers. The learning method improves the performance of indirect learning mechanism in the neuro-control of nonlinear systems. To precisely identify dynamic characteristics of the plant by utilizing a limited prior information we propose a new energy function which takes advantage of the proportional relationship between outputs of the plant and those of neural networks.

  • PDF

Adaptive neural control for compensation of time varying characteristics (시스템의 시변성을 보상하기 위한 신경회로망을 이용한 적응제어)

  • 이영태;장준오;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.224-229
    • /
    • 1992
  • We investigate a neural network as a dynamic system controller when system characteristics are abruptly changing. The shape of sigmoid functions are determined by autotuing method for the optimum sigmoid function of the neural networks. By using information stored in the identifying network a novel algorithm that can adapt the control action of the controller has been developed. Robustness can be seen from its ability to adjust large variations of parameters. The potential of the proposed method is demonstrated by simulations.

  • PDF

A Fast Automatic Test Pattern Generator Using Massive Parallelism (대량의 병렬성을 이용한 고속 자동 테스트 패턴 생성기)

  • 김영오;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.661-670
    • /
    • 1995
  • This paper presents a fast massively parallel automatic test pattern generator for digital combinational logic circuits using neural networks. Automatic test pattern generation neural network(ATPGNN) evolves its state to a stable local minima by exchanging messages among neural network modules. In preprocessing phase, we calculate the essential assignments for the stuck-at faults in fault list by adopting dominator concept. It makes more neurons be fixed and the system speed up. Consequently. fast test pattern generation is achieved. Test patterns for stuck-open faults are generated through getting initialization patterns for the obtained stuck-at faults in the corresponding ATPGNN.

  • PDF