• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.035 seconds

Fuzzy-Neuro Controller for Speed of Slip Energy Recovery and Active Power Filter Compensator

  • Tunyasrirut, S.;Ngamwiwit, J.;Furuya, T.;Yamamoto, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.480-480
    • /
    • 2000
  • In this paper, we proposed a fuzzy-neuro controller to control the speed of wound rotor induction motor with slip energy recovery. The speed is limited at some range of sub-synchronous speed of the rotating magnetic field. Control speed by adjusting resistance value in the rotor circuit that occurs the efficiency of power are reduced, because of the slip energy is lost when it passes through the rotor resistance. The control system is designed to maintain efficiency of motor. Recently, the emergence of artificial neural networks has made it conductive to integrate fuzzy controllers and neural models for the development of fuzzy control systems, Fuzzy-neuro controller has been designed by integrating two neural network models with a basic fuzzy logic controller. Using the back propagation algorithm, the first neural network is trained as a plant emulator and the second neural network is used as a compensator for the basic fuzzy controller to improve its performance on-line. The function of the neural network plant emulator is to provide the correct error signal at the output of the neural fuzzy compensator without the need for any mathematical modeling of the plant. The difficulty of fine-tuning the scale factors and formulating the correct control rules in a basic fuzzy controller may be reduced using the proposed scheme. The scheme is applied to the control speed of a wound rotor induction motor process. The control system is designed to maintain efficiency of motor and compensate power factor of system. That is: the proposed controller gives the controlled system by keeping the speed constant and the good transient response without overshoot can be obtained.

  • PDF

A Study of Land Suitability Analysis by Integrating GSIS with Artificial Neural Networks (GSIS와 인공신경망의 결합에 의한 토지적합성분석에 관한 연구)

  • 양옥진;정영동
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.179-189
    • /
    • 2000
  • This study is tried to organic combination in implementing the suitability analysis of urban landuse between GSIS and ANN(Artificial Neural Network). ANN has merit that can decide rationally connectivity weights among neural network nodes through procedure of learning. It is estimated to be possible that replacing the weight among factors needed in spatial analysis of the connectivity weight on neural network. This study is composed of two kinds of neural networks to be executed. First neural network was used in the suitability analysis of landuse and second one was oriented to analyze of optimum landuse pattern. These neural networks were learned with back-propagation algorithm using the steepest gradient which is embodied by C++ program and used sigmoid function as a active function. Analysis results show landuse suitability map and optimum landuse pattern of study area consisted of residental, commercial. industrial and green zone in present zoning system. Each result map was written by the Grid format of Arc/Info. Also, suitability area presented in the suitability map and optimum landuse pattern show distribution pattern consistent with theroretical concept or urban landuse plan in aspect of location and space structure.

  • PDF

Dynamic Hand Gesture Recognition Using CNN Model and FMM Neural Networks (CNN 모델과 FMM 신경망을 이용한 동적 수신호 인식 기법)

  • Kim, Ho-Joon
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.95-108
    • /
    • 2010
  • In this paper, we present a hybrid neural network model for dynamic hand gesture recognition. The model consists of two modules, feature extraction module and pattern classification module. We first propose a modified CNN(convolutional Neural Network) a pattern recognition model for the feature extraction module. Then we introduce a weighted fuzzy min-max(WFMM) neural network for the pattern classification module. The data representation proposed in this research is a spatiotemporal template which is based on the motion information of the target object. To minimize the influence caused by the spatial and temporal variation of the feature points, we extend the receptive field of the CNN model to a three-dimensional structure. We discuss the learning capability of the WFMM neural networks in which the weight concept is added to represent the frequency factor in training pattern set. The model can overcome the performance degradation which may be caused by the hyperbox contraction process of conventional FMM neural networks. From the experimental results of human action recognition and dynamic hand gesture recognition for remote-control electric home appliances, the validity of the proposed models is discussed.

Active pulse classification algorithm using convolutional neural networks (콘볼루션 신경회로망을 이용한 능동펄스 식별 알고리즘)

  • Kim, Geunhwan;Choi, Seung-Ryul;Yoon, Kyung-Sik;Lee, Kyun-Kyung;Lee, Donghwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.106-113
    • /
    • 2019
  • In this paper, we propose an algorithm to classify the received active pulse when the active sonar system is operated as a non-cooperative mode. The proposed algorithm uses CNN (Convolutional Neural Networks) which shows good performance in various fields. As an input of CNN, time frequency analysis data which performs STFT (Short Time Fourier Transform) of the received signal is used. The CNN used in this paper consists of two convolution and pulling layers. We designed a database based neural network and a pulse feature based neural network according to the output layer design. To verify the performance of the algorithm, the data of 3110 CW (Continuous Wave) pulses and LFM (Linear Frequency Modulated) pulses received from the actual ocean were processed to construct training data and test data. As a result of simulation, the database based neural network showed 99.9 % accuracy and the feature based neural network showed about 96 % accuracy when allowing 2 pixel error.

Bio-signal Data Augumentation Technique for CNN based Human Activity Recognition (CNN 기반 인간 동작 인식을 위한 생체신호 데이터의 증강 기법)

  • Gerelbat BatGerel;Chun-Ki Kwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.90-96
    • /
    • 2023
  • Securing large amounts of training data in deep learning neural networks, including convolutional neural networks, is of importance for avoiding overfitting phenomenon or for the excellent performance. However, securing labeled training data in deep learning neural networks is very limited in reality. To overcome this, several augmentation methods have been proposed in the literature to generate an additional large amount of training data through transformation or manipulation of the already acquired traing data. However, unlike training data such as images and texts, it is barely to find an augmentation method in the literature that additionally generates bio-signal training data for convolutional neural network based human activity recognition. Thus, this study proposes a simple but effective augmentation method of bio-signal training data for convolutional neural network based human activity recognition. The usefulness of the proposed augmentation method is validated by showing that human activity is recognized with high accuracy by convolutional neural network trained with its augmented bio-signal training data.

Transmission of Moving Image on the Internet Using Wavelet Transform and Neural Network (웨이블릿변환과 신경회로를 이용한 동영상의 실시간 전송)

  • Kim, Jeong-Ha;Lee, Hak-No;Nam, Boo-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1077-1081
    • /
    • 2004
  • In this Paper we discuss an algorithm for a real-time transmission of moving color image on the TCP/IP network using wavelet transform and neural network. The Image frames received from the camera are two-level wavelet-transformed in the server, and are transmitted to the client on the network. Then, the client performs the inverse wavelet-transform using only the received pieces of each image frame within the prescribed time limit to display the moving images. When the TCP/IP network is busy, only a fraction of each image frame will be delivered. When the line is free, the whole frame of each image will be transferred to the client. The receiver warns the sender of the condition of traffic congestion in the network by sending a special short frame for this specific purpose. The sender can respond to this information of warning by simply reducing the data rate which is adjusted with a neural network or fuzzy logic. In this way we can send a stream of moving images adaptively adjusting to the network traffic condition.

Advancing Process Plant Design: A Framework for Design Automation Using Generative Neural Network Models

  • Minhyuk JUNG;Jaemook CHOI;Seonu JOO;Wonseok CHOI;Hwikyung Chun
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1285-1285
    • /
    • 2024
  • In process plant construction, the implementation of design automation technologies is pivotal in reducing the timeframes associated with the design phase and in enabling the generation and evaluation of a variety of design alternatives, thereby facilitating the identification of optimal solutions. These technologies can play a crucial role in ensuring the successful delivery of projects. Previous research in the domain of design automation has primarily focused on parametric design in architectural contexts and on the automation of equipment layout and pipe routing within plant engineering, predominantly employing rule-based algorithms. Nevertheless, these studies are constrained by the limited flexibility of their models, which narrows the scope for generating alternative solutions and complicates the process of exploring comprehensive solutions using nonlinear optimization techniques as the number of design and engineering parameters increases. This research introduces a framework for automating plant design through the use of generative neural network models to overcome these challenges. The framework is applicable to the layout problems of process plants, covering the equipment necessary for production processes and the facilities for essential resources and their interconnections. The development of the proposed Neural-network (NN) based Generative Design Model unfolds in four stages: (a) Rule-based Model Development: This initial phase involves the development of rule-based models for layout generation and evaluation, where the generation model produces layouts based on predefined parameters, and the evaluation model assesses these layouts using various performance metrics. (b) Neural Network Model Development: This phase transitions towards neural network models, establishing a NN-based layout generation model utilizing Generative Adversarial Network (GAN)-based methods and a NN-based layout evaluation model. (c) Model Optimization: The third phase is dedicated to optimizing the models through Bayesian Optimization, aiming to extend the exploration space beyond the limitations of rule-based models. (d) Inverse Design Model Development: The concluding phase employs an inverse design method to merge the generative and evaluative networks, resulting in a model that outputs layout designs to meet specific performance objectives. This study aims to augment the efficiency and effectiveness of the design process in process plant construction, transcending the limitations of conventional rule-based approaches and contributing to the achievement of successful project outcomes.

Centroid Neural Network with Bhattacharyya Kernel (Bhattacharyya 커널을 적용한 Centroid Neural Network)

  • Lee, Song-Jae;Park, Dong-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.861-866
    • /
    • 2007
  • A clustering algorithm for Gaussian Probability Distribution Function (GPDF) data called Centroid Neural Network with a Bhattacharyya Kernel (BK-CNN) is proposed in this paper. The proposed BK-CNN is based on the unsupervised competitive Centroid Neural Network (CNN) and employs a kernel method for data projection. The kernel method adopted in the proposed BK-CNN is used to project data from the low dimensional input feature space into higher dimensional feature space so as the nonlinear problems associated with input space can be solved linearly in the feature space. In order to cluster the GPDF data, the Bhattacharyya kernel is used to measure the distance between two probability distributions for data projection. With the incorporation of the kernel method, the proposed BK-CNN is capable of dealing with nonlinear separation boundaries and can successfully allocate more code vector in the region that GPDF data are densely distributed. When applied to GPDF data in an image classification probleml, the experiment results show that the proposed BK-CNN algorithm gives 1.7%-4.3% improvements in average classification accuracy over other conventional algorithm such as k-means, Self-Organizing Map (SOM) and CNN algorithms with a Bhattacharyya distance, classed as Bk-Means, B-SOM, B-CNN algorithms.

Feature Vector Decision Method of Various Fault Signals for Neural-network-based Fault Diagnosis System (신경회로망 기반 고장 진단 시스템을 위한 고장 신호별 특징 벡터 결정 방법)

  • Han, Hyung-Seob;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1009-1017
    • /
    • 2010
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. For effective fault diagnosis, this paper used MLP(multi-layer perceptron) network which is widely used in pattern classification. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes the decision method of the proper feature vectors about each fault signal for neural-network-based fault diagnosis system. We applied LPC coefficients, maximum magnitudes of each spectral section in FFT and RMS(root mean square) and variance of wavelet coefficients as feature vectors and selected appropriate feature vectors as comparing error ratios of fault diagnosis for sound, vibration and current fault signals. From experiment results, LPC coefficients and maximum magnitudes of each spectral section showed 100 % diagnosis ratios for each fault and the method using wavelet coefficients had noise-robust characteristic.