• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.039 seconds

Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks

  • Asteris, Panagiotis G.;Armaghani, Danial J.;Hatzigeorgiou, George D.;Karayannis, Chris G.;Pilakoutas, Kypros
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.469-488
    • /
    • 2019
  • In this research study, the artificial neural networks approach is used to estimate the ultimate shear capacity of reinforced concrete beams with transverse reinforcement. More specifically, surrogate approaches, such as artificial neural network models, have been examined for predicting the shear capacity of concrete beams, based on experimental test results available in the pertinent literature. The comparison of the predicted values with the corresponding experimental ones, as well as with available formulas from previous research studies or code provisions highlight the ability of artificial neural networks to evaluate the shear capacity of reinforced concrete beams in a trustworthy and effective manner. Furthermore, for the first time, the (quantitative) values of weights for the proposed neural network model, are provided, so that the proposed model can be readily implemented in a spreadsheet and accessible to everyone interested in the procedure of simulation.

A New Stochastic Binary Neural Network Based on Hopfield Model and Its Application

  • Nakamura, Taichi;Tsuneda, Akio;Inoue, Takahiro
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.34-37
    • /
    • 2002
  • This paper presents a new stochastic binary neural network based on the Hopfield model. We apply the proposed network to TSP and compare it with other methods by computer simulations. Furthermore, we apply 2-opt to the proposed network to improve the performance.

  • PDF

Optimal Structure of Wavelet Modular Wavelet Network Systems Using Genetic Algorithm (유전 알고리즘을 이용한 웨이브릿 모듈라 신경망의 최적 구조 설계)

  • 최영준;서재용;연정흠;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.115-118
    • /
    • 2000
  • In order to approximate a nonlinear function, modular wavelet networks combining wavelet theory and modular concept based on single layer neural network have been proposed as an alternative to conventional wavelet neural networks and kind of modular network. Modular wavelet networks provide better approximating performance than conventional one. In this paper, we propose an effective method to construct an optimal modualr wavelet network using genetic algorithm. This is verified through experimental results.

  • PDF

Development of a neural network with fuzzy preprocessor (퍼지 전처리기를 가진 신경회로망 모델의 개발)

  • 조성원;최경삼;황인호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.718-723
    • /
    • 1993
  • In this paper, we propose a neural network with fuzzy preprocessor not only for improving the classification accuracy but also for being able to classify objects whose attribute values do not have clear boundaries. The fuzzy input signal representation scheme is included as a preprocessing module. It transforms imprecise input in linguistic form and precisely stated numerical input into multidimensional numerical values. The transformed input is processed in the postprocessing module. The experimental results indicate the superiority of the backpropagation network with fuzzy preprocessor in comparison to the conventional backpropagation network.

  • PDF

Comparison of neural network algorithms for the optimal routing in a Multistage Interconnection Network (MIN의 최적경로 배정을 위한 신경회로망 알고리즘의 비교)

  • Kim, Seong-Su;Gong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.569-571
    • /
    • 1995
  • This paper compares the simulated annealing and the Hopfield neural network method for an optimal routing in a multistage interconnection network(MIN). The MIN provides a multiple number of paths for ATM cells to avoid cell conflict. Exhaustive search always finds the optimal path, but with heavy computation. Although greedy method sets up a path quickly, the path found need not be optimal. The simulated annealing can find an sub optimal path in time comparable with the greedy method.

  • PDF

Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks

  • Huang, Wei;Oh, Sung-Kwun;Zhang, Honghao
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.636-645
    • /
    • 2012
  • This study introduces an information granular-based fuzzy radial basis function neural networks (FRBFNN) based on multiobjective optimization and weighted least square (WLS). An improved multiobjective space search algorithm (IMSSA) is proposed to optimize the FRBFNN. In the design of FRBFNN, the premise part of the rules is constructed with the aid of Fuzzy C-Means (FCM) clustering while the consequent part of the fuzzy rules is developed by using four types of polynomials, namely constant, linear, quadratic, and modified quadratic. Information granulation realized with C-Means clustering helps determine the initial values of the apex parameters of the membership function of the fuzzy neural network. To enhance the flexibility of neural network, we use the WLS learning to estimate the coefficients of the polynomials. In comparison with ordinary least square commonly used in the design of fuzzy radial basis function neural networks, WLS could come with a different type of the local model in each rule when dealing with the FRBFNN. Since the performance of the FRBFNN model is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules and the orders of the polynomials present in the consequent parts of the rules, we carry out both structural as well as parametric optimization of the network. The proposed IMSSA that aims at the simultaneous minimization of complexity and the maximization of accuracy is exploited here to optimize the parameters of the model. Experimental results illustrate that the proposed neural network leads to better performance in comparison with some existing neurofuzzy models encountered in the literature.

Reinforcement Learning Control using Self-Organizing Map and Multi-layer Feed-Forward Neural Network

  • Lee, Jae-Kang;Kim, Il-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.142-145
    • /
    • 2003
  • Many control applications using Neural Network need a priori information about the objective system. But it is impossible to get exact information about the objective system in real world. To solve this problem, several control methods were proposed. Reinforcement learning control using neural network is one of them. Basically reinforcement learning control doesn't need a priori information of objective system. This method uses reinforcement signal from interaction of objective system and environment and observable states of objective system as input data. But many methods take too much time to apply to real-world. So we focus on faster learning to apply reinforcement learning control to real-world. Two data types are used for reinforcement learning. One is reinforcement signal data. It has only two fixed scalar values that are assigned for each success and fail state. The other is observable state data. There are infinitive states in real-world system. So the number of observable state data is also infinitive. This requires too much learning time for applying to real-world. So we try to reduce the number of observable states by classification of states with Self-Organizing Map. We also use neural dynamic programming for controller design. An inverted pendulum on the cart system is simulated. Failure signal is used for reinforcement signal. The failure signal occurs when the pendulum angle or cart position deviate from the defined control range. The control objective is to maintain the balanced pole and centered cart. And four states that is, position and velocity of cart, angle and angular velocity of pole are used for state signal. Learning controller is composed of serial connection of Self-Organizing Map and two Multi-layer Feed-Forward Neural Networks.

  • PDF

Adoption of Artificial Neural Network for Rest, Enhanced Postprocessing of Beats, and Initial Melody Processing for Automatic Composition System (자동작곡시스템에서 쉼표용 인공신경망 도입 및 개선된 박자후처리와 초기멜로디 처리)

  • Kim, Kyunghwan;Jung, Sung Hoon
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.449-459
    • /
    • 2016
  • This paper proposes a new method to improve the three problems of existing automatic composition method using artificial neural networks. The first problem is that the existing beat post-processing to fit into music theories could not handle all the cases of occurring. The second one is that the pitch space generated by artificial neural networks is distorted because the rest is trained with the pitch on the same neural network with large values. The last problem is caused by the difference between the initial melody and beats given by user and those generated by an artificial neural network in the process of new composition. In order to treat these problems, we propose an enhanced post-processing of beats, initial melody processing, and adoption of artificial neural network for rest. It was found from experiments that the proposed methods totally resolved the three problems.

A Design of a Fault Tolerant Control System Using On-Line Learning Neural Networks (온라인 학습 신경망 조직을 이용한 내고장성 제어계의 설계)

  • Younghwan An
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1181-1192
    • /
    • 1998
  • This paper describes the performance of a full-authority neural network-based fault tolerant system within a flight control system. This fault tolerant flight control system integrates sensor and actuator failure detection, identification, and accommodation (SFDIA and AFDIA), The first task is achieved by incorporating a main neural network (MNN) and a set of n decentralized neural networks (DNNs) to create a system for achieving fault tolerant capabilities for a system with n sensors assumed to be without physical redundancy The second scheme implements the same main neural network integrated with three neural network controllers (NNCs). The function of NNCs is to regain equilibrium and to compensate for the pitching, rolling. and yawing moments induced by the failure. Particular emphasis is placed in this study toward achieving an efficient integration between SFDIA and AFDIA without degradation of performance in terms of false alarm rates and incorrect failure identification. The results of the simulation with different actuator and sensor failures are presented and discussed.

  • PDF

(Design of Neural Network Controller for Contiunous-Time Chaotic Nonlinear Systems) (연속 시간 혼돈 비선형 시스템을 위한 신경 회로망 제어기의 설계)

  • O, Gi-Hun;Choe, Yun-Ho;Park, Jin-Bae;Im, Gye-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.1
    • /
    • pp.51-65
    • /
    • 2002
  • This paper presents a design method of the neural network-based controller using an indirect adaptive control method to deal with an intelligent control for chaotic nonlinear systems. The proposed control method includes the identification and control Process for chaotic nonlinear systems. The identification process for chaotic nonlinear systems is an off-line process which utilizes the serial-parallel structure of multilayer neural networks and simple state space neural networks. The control process is an on-line process which uses the trained neural networks as the system model. An error back-propagation method was used for training of identification and control for chaotic nonlinear systems. The performance of the proposed neural network controller was evaluated by application to the Duffing equation and the Lorenz equation, and the proposed controller was compared with other neural network-based controllers by computer simulations.