• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.033 seconds

Design of an ATM Switch Controller Using Neural Networks (신경회로망을 이용한 ATM 교환기의 제어부 설계)

  • 김영우;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.123-133
    • /
    • 1994
  • This paper presents an output arbitrator for input buffering ATM (Asynchronous Transfer Mode) switches using neural networks. To avoid blocking in ATM switches with blocking characteristics, it is required to buffer ATM cells in input buffer and to schedule them. The N$\times$N request matrix is divided into N/16 submatrices in order to get rid of internal blocking systematically in scheduling phase. The submatrices are grouped into N/4 groups, and the cells in each group are switched alternatively. As the window size of input buffer is increases, the number of input cells switched in a time slot approaches to N. The selection of nonblocking cells to be switched is done by neural network modules. N/4 neural network modules are operated simultaneously. Fast selection can be achieved by massive parallelism of neural networks. The neural networks have 4N neurons and 14N connection. The proposed method is implemented in C language, and the simulation result confirms the feasibility of this method.

  • PDF

Learning Control of Inverted Pendulum Using Neural Networks (신경회로망을 이용한 도립전자의 학습제어)

  • Lee, Jea-Kang;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.99-107
    • /
    • 2004
  • This paper considers reinforcement learning control with the self-organizing map. Reinforcement learning uses the observable states of objective system and signals from interaction of the system and the environments as input data. For fast learning in neural network training, it is necessary to reduce learning data. In this paper, we use the self-organizing map to parition the observable states. Partitioning states reduces the number of learning data which is used for training neural networks. And neural dynamic programming design method is used for the controller. For evaluating the designed reinforcement learning controller, an inverted pendulum of the cart system is simulated. The designed controller is composed of serial connection of self-organizing map and two Multi-layer Feed-Forward Neural Networks.

  • PDF

Development of Electric Load Forecasting System Using Neural Network (신경회로망을 이용한 단기전력부하 예측용 시스템 개발)

  • Kim, H.S.;Mun, K.J.;Hwang, G.H.;Park, J.H.;Lee, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1522-1522
    • /
    • 1999
  • This paper proposes the methods of short-term load forecasting using Kohonen neural networks and back-propagation neural networks. Historical load data is divided into 5 patterns for the each seasonal data using Kohonen neural networks and using these results, load forecasting neural network is used for next day hourly load forecasting. Normal days and holidays are forecasted. For load forecasting in summer, max-, and min-temperature data are included in neural networks for a better forecasting accuracy. To show the possibility of the proposed method, it was tested with hourly load data of Korea Electric Power Corporation. (1993-1997)

  • PDF

Automatic Generation of Machining Parameters of Electric Discharge Wire-Cut Using 2-Step Neuro-Estimation (와이어 가공 조건 자동 생성 2 단계 신경망 추정)

  • 이건범;주상윤;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.7-13
    • /
    • 1998
  • This paper presents a methodology for determining machining conditions in Electric Discharge Wire-Cut. Unification of two phase neural network approach with an automatic generation of machining parameters is designed. The first phase neural network, which is 1 to M backward-mapping neural net, produces approximate machining conditions. Using approximate conditions, all possible conditions are newly created by the proposed automatic generation procedure. The second phase neural net, which is a M to 1 forward-mapping neural net, determines the best one among the generated candidates. Simulation results with ANN are given to verify that the presenting methodology could apply for determining machining parameters in Electric Discharge Wire-Cut.

  • PDF

DESIGN OF CONTROLLER FOR NONLINEAR SYSTEM USING DYNAMIC NEURAL METWORKS

  • Park, Seong-Wook;Seo, Bo-Hyeok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.60-64
    • /
    • 1995
  • The conventional neural network models are a parody of biological neural structures, and have very slow learning. In order to emulate some dynamic functions, such as learning and adaption, and to better reflect the dynamics of biological neurons, M.M. Gupta and D.H. Rao have developed a 'dynamic neural model'(DNU). Proposed neural unit model is to introduce some dynamics to the neuron transfer function, such that the neuron activity depends on internal states. Integrating an dynamic elementry processor within the neuron allows the neuron to act dynamic response Numerical examples are presented for a model system. Those case studies showed that the proposed DNU is so useful in practical sense.

  • PDF

Memristor Bridge Synapse-based Neural Network Circuit Design and Simulation of the Hardware-Implemented Artificial Neuron (멤리스터 브리지 시냅스 기반 신경망 회로 설계 및 하드웨어적으로 구현된 인공뉴런 시뮬레이션)

  • Yang, Chang-ju;Kim, Hyongsuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.477-481
    • /
    • 2015
  • Implementation of memristor-based multilayer neural networks and their hardware-based learning architecture is investigated in this paper. Two major functions of neural networks which should be embedded in synapses are programmable memory and analog multiplication. "Memristor", which is a newly developed device, has two such major functions in it. In this paper, multilayer neural networks are implemented with memristors. A Random Weight Change algorithm is adopted and implemented in circuits for its learning. Its hardware-based learning on neural networks is two orders faster than its software counterpart.

Neural network-based generation of artificial spatially variable earthquakes ground motions

  • Ghaffarzadeh, Hossein;Izadi, Mohammad Mahdi;Talebian, Nima
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.509-525
    • /
    • 2013
  • In this paper, learning capabilities of two types of Arterial Neural Networks, namely hierarchical neural networks and Generalized Regression Neural Network were used in a two-stage approach to develop a method for generating spatial varying accelerograms from acceleration response spectra and a distance parameter in which generated accelerogram is desired. Data collected from closely spaced arrays of seismographs in SMART-1 array were used to train neural networks. The generated accelerograms from the proposed method can be used for multiple support excitations analysis of structures that their supports undergo different motions during an earthquake.

Nondestructive Sugar Content Measurement in Apple by Nir Spectrum Analysis using Neural Network

  • Lee, S.H.;Noh, S.H.;Kim, W.G.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.325-333
    • /
    • 1996
  • This study was conducted to develop neural networks of predicting the sugar content of fruits based on the optical densities obtained from a spectrophotometer. Pear, apple and peach were used in investigating the feasbility of the developed neural networks as a nondestructive measurement. A spectrophotometer was used to measure the optical densities of test fruits. The neural networks suggested in this study consisted of multi-layers having one hidden layer and one output layer. The correlation coefficients between the predicted and the measured sugar content for most fruits were high. The neural networks using 2nd derivatives of optical density spectrum produced a better results in predicting the sugar content of fruits. This study contributed to develop a method for nondestructively predicting the sugar content of fruits.

  • PDF

Using Classification function to integrate Discriminant Analysis, Logistic Regression and Backpropagation Neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.417-426
    • /
    • 2000
  • This study suggests integrated neural network models for Interest rate forecasting using change-point detection, classifiers, and classification functions based on structural change. The proposed model is composed of three phases with tee-staged learning. The first phase is to detect successive and appropriate structural changes in interest rare dataset. The second phase is to forecast change-point group with classifiers (discriminant analysis, logistic regression, and backpropagation neural networks) and their. combined classification functions. The fecal phase is to forecast the interest rate with backpropagation neural networks. We propose some classification functions to overcome the problems of two-staged learning that cannot measure the performance of the first learning. Subsequently, we compare the structured models with a neural network model alone and, in addition, determine which of classifiers and classification functions can perform better. This article then examines the predictability of the proposed classification functions for interest rate forecasting using structural change.

  • PDF

Evolvable Neural Networks Based on Developmental Models for Mobile Robot Navigation

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.176-181
    • /
    • 2007
  • This paper presents evolvable neural networks based on a developmental model for navigation control of autonomous mobile robots in dynamic operating environments. Bio-inspired mechanisms have been applied to autonomous design of artificial neural networks for solving practical problems. The proposed neural network architecture is grown from an initial developmental model by a set of production rules of the L-system that are represented by the DNA coding. The L-system is based on parallel rewriting mechanism motivated by the growth models of plants. DNA coding gives an effective method of expressing general production rules. Experiments show that the evolvable neural network designed by the production rules of the L-system develops into a controller for mobile robot navigation to avoid collisions with the obstacles.