• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.043 seconds

Identification of nonlinear dynamical systems based on self-organized distributed networks (자율분산 신경망을 이용한 비선형 동적 시스템 식별)

  • 최종수;김형석;김성중;권오신;김종만
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.574-581
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Networks(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Self-Organized Distributed Networks (SODN). The learning with the SODN is fast and precise. Such properties are caused from the local learning mechanism. Each local network learns only data in a subregion. This paper also discusses neural network as identifier of nonlinear dynamical systems. The structure of nonlinear system identification employs series-parallel model. The identification procedure is based on a discrete-time formulation. Through extensive simulation, SODN is shown to be effective for identification of nonlinear dynamical systems. (author). 13 refs., 7 figs., 2 tabs.

  • PDF

A Study Of Handwritten Digit Recognition By Neural Network Trained With The Back-Propagation Algorithm Using Generalized Delta Rule (신경망 회로를 이용한 필기체 숫자 인식에 관할 연구)

  • Lee, Kye-Han;Chung, Chin-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2932-2934
    • /
    • 1999
  • In this paper, a scheme for recognition of handwritten digits using a multilayer neural network trained with the back-propagation algorithm using generalized delta rule is proposed. The neural network is trained with hand written digit data of different writers and different styles. One of the purpose of the work with neural networks is the minimization of the mean square error(MSE) between actual output and desired one. The back-propagation algorithm is an efficient and very classical method. The back-propagation algorithm for training the weights in a multilayer net uses the steepest descent minimization procedure and the sigmoid threshold function. As an error rate is reduced, recognition rate is improved. Therefore we propose a method that is reduced an error rate.

  • PDF

Fault Type Classification and Fault Distance Estimation for High Speed Relaying Using Neural Networks in Power Transmission Systems (신경회로망을 이용한 송전계통의 고속계전기용 고장유형분류 및 고장거리 추정방법)

  • Lee, H.S.;Yoon, J.Y.;Park, J.H.;Jang, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.808-810
    • /
    • 1996
  • In this paper, neural network, which has learning capability, is used for fault type classification and fault section estimation for high speed relaying. The potential of the neural network approach is demonstrated by simulation using ATP. The instantaneous values of voltages and currents are used the inputs of neural networks. This approach determines the fault section directly. In this paper, back-propagation network(BPN) is used for fault type classification and fault section estimation and can use for high speed relaying because it determines fault section within a few msec.

  • PDF

A Study on High Impedance Fault Detection Using Neural Networks in Power Distribution Systems (배전계통에서 신경회로망을 이용한 고저항 고장 검출에 관한 연구)

  • Lee, H.S.;Lee, S.S.;Park, J.H.;Jang, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.811-813
    • /
    • 1996
  • High impedance fault can not be easily detected by conventional method. But if it would not be detected and cleared quickly, it can result in fires, and electric shock. In this paper, neural network, which has learning capability, is used for high impedance fault detector. The potential of the neural network approach is demonstrated by simulation using KEPCO's measured data. The instantaneous values and frequency spectrum of current are respectively used as the inputs of neural networks. Also, the methods using combined data to exploit the advantage of each data are proposed. In this paper, back-propagation network(BPN) is used for high impedance fault detector and can use for high speed relay because it detects faults within 1 cycle.

  • PDF

Control method for DC Motor based on Neural Networks (인공신경회로망에 기초한 직류모터제어)

  • Park, Jin-Hyun;Choi, Young-Kiu;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.248-250
    • /
    • 1993
  • In this paper, we assume that the dynamics of DC motor and nonlinear load are unknown. We train the inverse dynamic model of DC motor and nonlinear load using the neural network and construct speed control system based on the traind dynamic model and current control mode. Speed prediction scheme using neural network is also proposed the alleviate the time delay effect caused by the computation time of neural network. Simulation results show good performances of the control system. Finally, hardware configuration of the control system is outlined.

  • PDF

Adaptive Control of the Nonlinear Systems Using Diagonal Recurrent Neural Networks (대각귀환 신경망을 이용한 비선형 적응 제어)

  • Ryoo, Dong-Wan;Lee, Young-Seog;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.939-942
    • /
    • 1996
  • This paper presents a stable learning algorithm for diagonal recurrent neural network(DRNN). DRNN is applied to a problem of controlling nonlinear dynamical systems. A architecture of DRNN is a modified model of the Recurrent Neural Network(RNN) with one hidden layer, and the hidden layer is comprised of self-recurrent neurons. DRNN has considerably fewer weights than RNN. Since there is no interlinks amongs in the hidden layer. DRNN is dynamic mapping and is better suited for dynamical systems than static forward neural network. To guarantee convergence and for faster learning, an adaptive learning rate is developed by using Lyapunov function. The ability and effectiveness of identifying and controlling a nonlinear dynamic system using the proposed algorithm is demonstrated by computer simulation.

  • PDF

Landslide Susceptibility Analysis and its Verification using Likelihood Ratio, Logistic Regression and Artificial Neural Network Methods: Case study of Yongin, Korea

  • Lee, S.;Ryu, J. H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.132-134
    • /
    • 2003
  • The likelihood ratio, logistic regression and artificial neural networks methods are applied and verified for analysis of landslide susceptibility in Yongin, Korea using GIS. From a spatial database containing such data as landslide location, topography, soil, forest, geology and land use, the 14 landsliderelated factors were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by likelihood ratio, logistic regression and artificial neural network methods. Before the calculation, the study area was divided into two sides (west and east) of equal area, for verification of the methods. Thus, the west side was used to assess the landslide susceptibility, and the east side was used to verify the derived susceptibility. The results of the landslide susceptibility analysis were verified using success and prediction rates. The v erification results showed satisfactory agreement between the susceptibility map and the exis ting data on landslide locations.

  • PDF

A Study on the Neural Adaptive Observer for I.M. Drives (유도전동기 구동을 위한 신경망 적응 관측기에 대한 연구)

  • Jeon, Hi-Jong;Kim, Beung-Jin;Son, Jin-Geun;Jeong, Eull-Gi;Kim, Jin-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.216-218
    • /
    • 1995
  • In this article a neural network adaptive observer is proposed and applied to the case of induction motor control. The high performance vector control drives require exact knowledge of rotor flux. Because rotor time constant is needed to observe rotor flux, the accurate estimation of rotor time constant is important. For these problems, proposed observer which comprises neural network flux observer and neural network torque observer is trained to learn the flux dynamics and torque dynamics and subject to further on-line training by means of a backpropagation algorithem. Therefore it has been shown that the robust control of induction motor neglects the rotor time constant variations.

  • PDF

Estimation of Nugget Size in Resistance Spot Welding for Galvanized Steel Using an Artificial Neural Networks (아연도금강판의 저항 점용섭에서 인공신경회로망을 이용한 용융부 추정에 관한 연구)

  • 박종우;이정우;최용범;장희석
    • Proceedings of the KWS Conference
    • /
    • 1992.10a
    • /
    • pp.91-95
    • /
    • 1992
  • The resistance spot welding process has been extensively used for joining of sheet metals, which are subject to variation of many process variables. Many qualitive analyses of sampled process variables have been attempted to predict nugget size. In this paper, dynamic resistance and electrode movement signal which is a good indicative of the nugget size was examined by introducing an artificial neural network estimator. An artificial neural feedforward network with back-propagation of error was applied for the estimation of the nugget size. The prediction by the neural network is in good agreement with the actual nugget size for resistance spot welding of galvanized steel. The results are quite promising in that the quantitative estimation of the invisible nugget size can be achieved without conventional destructive testing of welds.

  • PDF

Control of a Heavy Load Pointing System Using Neural Networks (신경회로망을 이용한 대부하 표적지향 시스템 제어)

  • 김병운;강이석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.55-63
    • /
    • 2004
  • This paper presents neural network based controller using the feedback error loaming technique for a heavy load pointing system. Also the mathematical model was developed to analyze heavy load pointing system. The control scheme consists of a feedforward neural network controller and a fixed-gain feedback controller. This neural network controller is trained so as to make the output of the feedback controller zero. The proposed controller is compared with the conventional PI controller through simulations, and the results show that the pointing accuracy of the proposed control system are improved against the disturbance induced by vehicle running on the bump course.