• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.036 seconds

Optimal Environmental and Economic Operation using Evolutionary Computation and Neural Networks (진화연산과 신경망이론을 이용한 전력계통의 최적환경 및 경제운용)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;You, Seok-Ku
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1498-1506
    • /
    • 1999
  • In this paper, a hybridization of Evolutionary Strategy (ES) and a Two-Phase Neural Network(TPNN) is applied to the optimal environmental and economic operation. As the evolutionary computation, ES is to search for the global optimum based on natural selection and genetics but it shows a defect of reducing the convergence rate in the latter part of search, and often does not search the exact solution. Also, neural network theory as a local search technique can be used to search a more exact solution. But it also has the defect that a solution frequently sticks to the local region. So, new algorithm is presented as hybrid methods by combining merits of two methods. The hybrid algorithm has been tested on Emission Constrained Economic Dispatch (ECED) problem and Weighted Emission Economic Dispatch (WEED) problem for optimal environmental and economic operation. The result indicated that the hybrid approach can outperform the other computational efficiency and accuracy.

  • PDF

Implementation of Process System and Intelligent Monitoring Environment using Neural Network

  • Kim, Young-Tak;Kim, Gwan-Hyung;Kim, Soo-Jung;Lee, Sang-Bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.56-62
    • /
    • 2004
  • This research attempts to suggest a detecting method for cutting position of an object using the neural network, which is one of intellectual methods, and the digital image processing method. The extraction method of object information using the image data obtained from the CCD camera as a replacement of traditional analog sensor thanks to the development of digital image processing. Accordingly, this research determines the threshold value in binary-coding of an input image with the help of image processing method and the neural network for the real-time gray-leveled input image in substitution for lighting; as a result, a specific position is detected from the processed binary-coded image and an actual system designed is suggested as an example.

A Disctete Model Reference Control With a Neural Network System Ldentification for an Active Four Wheel Steering System

  • 김호용;최창환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.29-39
    • /
    • 1997
  • A discrete model reference control scheme for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of discrete time nonlinar dynamics. The schmen employs a neural network to identify the plan systems, wher the neural network estimates the nonlinear dynamics of the plant. The algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed. Whith thd resulting identification model which contains the neural networks, the parameters of controller are adjusted. The proposed scheme is applied to the vehicle active four wheel system and shows the validity and effectiveness through simulation. The three-degree-of freedom vehicle handling model is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the yaw rate overshoot reduction of a typical mid-size car is improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response andl smaller side slip angle than the 2WS case.

  • PDF

The Development of Pattern Classification for Inner Defects in Semiconductor Packages by Self-Organizing Map (자기조직화 지도를 이용한 반도체 패키지 내부결함의 패턴분류 알고리즘 개발)

  • 김재열;윤성운;김훈조;김창현;양동조;송경석
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.65-70
    • /
    • 2003
  • In this study, researchers developed the estimative algorithm for artificial defect in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages : Crack, Delamination and Normal. According to the results, we were confirmed that estimative algerian was provided the recognition rates of 75.7% (for Crack) and 83.4% (for Delamination) and 87.2 % (for Normal).

A Study on Development of System for Prediction of the Optimal Bead Width on Robotic GMA Welding (로봇 GMA용접에 최적의 비드폭 예측 시스템 개발에 관한 연구)

  • 김일수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.57-63
    • /
    • 1998
  • An adaptive control in the robotic GMA welding is employed to monitor information about weld characteristics and process parameters as well as to modify those parameters to hold weld quality within acceptable limits. Typical characteristics are the bead geometry, composition, microstructure, appearance, and process parameters which govern the quality of the final weld. The main objectives of this thesis are to realize the mapping characteristics of bead width through learning. After learning, the neural estimation can estimate the bead width desired form the learning mapping characteristic. The design parameters of the neural network estimator(the number of hidden layers and the number of nodes in a layer) are chosen from an estimation error analysis. A series of bead of bead-on-plate GMA welding experiments was carried out in order to verify the performance of the neural network estimator. The experimental results show that the proposed neural network estimator can predict the bead width with reasonable accuracy and guarantee the uniform weld quality.

  • PDF

Splice Site Detection Using a Combination of Markov Model and Neural Network

  • M Abdul Baten, A.K.;Halgamuge, Saman K.;Wickramarachchi, Nalin;Rajapakse, Jagath C.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.167-172
    • /
    • 2005
  • This paper introduces a method which improves the performance of the identification of splice sites in the genomic DNA sequence of eukaryotes. This method combines a low order Markov model in series with a neural network for the predictions of splice sites. The lower order Markov model incorporates the biological knowledge surrounding the splice sites as probabilistic parameters. The Neural network takes the Markov encoded parameters as the inputs and produces the prediction. Two types of neural networks are used for the comparison. This method reduces the computational complexity and shows encouraging accuracy in the predictions of splice sites when applied to several standard splice site dataset.

  • PDF

Model Algorithmic Control for Paper Mills Using Neural Networks

  • Park Jong Ho;Yeo Yeong Koo;Park See Han;Sohn Chang Man
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.5 s.108
    • /
    • pp.11-20
    • /
    • 2004
  • In this work the Model Algorithmic Control (MAC) method is applied to control the grade change operations in paper mills. The neural network model for the grade change operations is identified first and the impulse model is extracted from the neural network model. Results of simulations for MAC control of grade change operations are compared with plant operation data. The major contribution of the present work is the application of MAC in the industrial plants based on the identification of neural network models. We can confirm that the proposed MAC method exhibits faster responses and less oscillatory behavior compared to the plant operation data in the grade change operations.

Effective Artificial Neural Network Approach for Non-Binary Incidence Matrix-Based Part-Machine Grouping (비이진 연관행렬 기반의 부품-기계 그룹핑을 위한 효과적인 인공신경망 접근법)

  • Won, You-Kyung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.4
    • /
    • pp.69-87
    • /
    • 2006
  • This paper proposes an effective approach for the part-machine grouping(PMG) based on the non-binary part-machine incidence matrix in which real manufacturing factors such as the operation sequences with multiple visits to the same machine and production volumes of parts are incorporated and each entry represents actual moves due to different operation sequences. The proposed approach adopts Fuzzy ART neural network to quickly create the Initial part families and their machine cells. A new performance measure to evaluate and compare the goodness of non-binary block diagonal solution is suggested. To enhance the poor solution due to category proliferation inherent to most artificial neural networks, a supplementary procedure reassigning parts and machines is added. To show effectiveness of the proposed approach to large-size PMG problems, a psuedo-replicated clustering procedure is designed. Experimental results with intermediate to large-size data sets show effectiveness of the proposed approach.

Robust Adaptive Neural Network Controller with Dynamic Structure for Nonaffine Nolinear Systems (불확실한 비선형 계통에 대한 동적인 구조를 가지는 강인한 적응 신경망 제어기 설계)

  • Park, Jang-Hyeon;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.647-655
    • /
    • 2001
  • In adaptive neuro-control, neural networks are used to approximate unknown plant nonlinearities. Until now, most of the studies in the field of controller design for nonlinear system using neural network considers the affine system with fixed number of neurons. This paper considers nonaffine nonlinear systems and on-line variation of the number of neurons. A control law and adaptive laws for neural network weights are established so that the whole system is stable in the sense of Lyapunov. In addition, at the expense of th input, tracking error converges to the arbitrary small neighborhood of the origin. The efficiency of the proposed scheme is shown through simulations ofa simple nonaffine nonlinear system.

  • PDF

Edge Preserving Image Compression with Weighted Centroid Neural Network (신경망에 의한 테두리를 보존하는 영상압축)

  • 박동철;우영준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1946-1952
    • /
    • 1999
  • A new image compression method to preserve edge characteristics in reconstructed images using an unsupervised learning neural is proposed in this paper. By the unsupervised competitive learning which generalizes previously proposed Centroid Neural Network(CNN) algorithm with the geometric characteristics of edge area and statistical characteristics of image data, more codevectors are allocated in the edge areas to provide the more accurate edges in reconstructed image. Experimental results show that the proposed method gives improved edge in reconstructed images when compared with SOM, Modified SOM and M/R-CNN.

  • PDF