• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.039 seconds

A Study of the Application of Neural Network for the Prediction of Top-bead Height (표면 비드높이 예측을 위한 최적의 신경회로망의 적용에 관한 연구)

  • Son, J.S.;Kim, I.S.;Park, C.E.;Kim, I.J.;Kim, H.H.;Seo, J.H.;Shim, J.Y.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2007
  • The full automation welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an neural network model to predict the weld top-bead height as a function of key process parameters in the welding. and to compare the developed models using three different training algorithms in order to select an adequate neural network model for prediction of top-bead height.

Artificial Neural Network based Motion Classification Algorithm using Surface Electromyogram (표면 근전도를 이용한 Artificial Neural Network 기반의 동작 분류 알고리즘)

  • Jeong, E.C.;Kim, S.J.;Song, Y.R.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • In this paper, Artificial Neural Network(ANN) based motion classification algorithm is proposed to classify wrist motions using surface electromyograms(sEMG). surface EMGs are obtained from two electrodes placed on the flexor carpi ulnaris muscle and extensor carpi ulnaris muscle of 26 subjects under no strain condition during wrist motions and used to recognize wrist motions such as up, down, left, right, and rest. Feature is extracted from obtained EMG signals in time domain for fast processing and used to classify wrist motions using ANN. DAMV, DASDV, MAV, and RMS were used as features and accuracies of motion classification based on ANN were 98.03% for DAMV, 97.97% for DASDV, 96.95% for MAV, 96.82% for RMS.

  • PDF

Intelligent Control Algorithm for the Adjustment Process During Electronics Production (전자제품생산의 조정고정을 위한 지능형 제어알고리즘)

  • 장석호;구영모;고택범;우광방
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.448-457
    • /
    • 1998
  • A neural network based control algorithm with fuzzy compensation is proposed for the automated adjustment in the production of electronic end-products. The process of adjustment is to tune the variable devices in order to examine the specified performances of the products ready prior to packing. Camcorder is considered as a target product. The required test and adjustment system is developed. The adjustment system consists of a NNC(neural network controller), a sub-NNC, and an auxiliary algorithm utilizing the fuzzy logic. The neural network is trained by means of errors between the outputs of the real system and the network, as well as on the errors between the changing rate of the outputs. Control algorithm is derived to speed up the learning dynamics and to avoid the local minima at higher energy level, and is able to converge to the global minimum at lower energy level. Many unexpected problems in the application of the real system are resolved by the auxiliary algorithms. As the adjustments of multiple items are related to each other, but the significant effect of performance by any specific item is not observed. The experimental result shows that the proposed method performs very effectively and are advantageous in simple architecture, extracting easily the training data without expertise, adapting to the unstable system that the input-output properties of each products are slightly different, with a wide application to other similar adjustment processes.

  • PDF

A new method to identify bridge bearing damage based on Radial Basis Function Neural Network

  • Chen, Zhaowei;Fang, Hui;Ke, Xinmeng;Zeng, Yiming
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.841-859
    • /
    • 2016
  • Bridge bearings are important connection elements between bridge superstructures and substructures, whose health states directly affect the performance of the bridges. This paper systematacially presents a new method to identify the bridge bearing damage based on the neural network theory. Firstly, based on the analysis of different damage types, a description of the bearing damage is introduced, and a uniform description for all the damage types is given. Then, the feasibility and sensitivity of identifying the bearing damage with bridge vibration modes are investigated. After that, a Radial Basis Function Neural Network (RBFNN) is built, whose input and output are the beam modal information and the damage information, respectively. Finally, trained by plenty of data samples formed by the numerical method, the network is employed to identify the bearing damage. Results show that the bridge bearing damage can be clearly reflected by the modal information of the bridge beam, which validates the effectiveness of the proposed method.

Driving Pattern Recognition Algorithm using Neural Network for Vehicle Driving Control (차량 주행제어를 위한 신경회로망을 사용한 주행패턴 인식 알고리즘)

  • Jeon, Soon-Il;Cho, Sung-Tae;Park, Jin-Ho;Park, Yeong-Il;Lee, Jang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.505-510
    • /
    • 2000
  • Vehicle performances such as fuel consumption and catalyst-out emissions are affected by a driving pattern, which is defined as a driving cycle with the grade in this study. We developed an algorithm to recognize a current driving pattern by using a neural network. And this algorithm can be used in adapting the driving control strategy to the recognized driving pattern. First, we classified the general driving patterns into 6 representative driving patterns, which are composed of 3 urban driving patterns, 2 suburban driving patterns and 1 expressway driving pattern. A total of 24 parameters such as average cycle velocity, positive acceleration kinetic energy, relative duration spent at stop, average acceleration and average grade are chosen to characterize the driving patterns. Second, we used a neural network (especially the Hamming network) to decide which representative driving pattern is closest to the current driving pattern by comparing the inner products between them. And before calculating inner product, each element of the current and representative driving patterns is transformed into 1 and -1 array as to 4 levels. In the end, we simulated the driving pattern recognition algorithm in a temporary pattern composed of 6 representative driving patterns and, verified the reliable recognition performance.

  • PDF

Design of a Recognizing System for Vehicle's License Plates with English Characters

  • Xing, Xiong;Choi, Byung-Jae;Chae, Seog;Lee, Mun-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.166-171
    • /
    • 2009
  • In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.

PREDICTION OF EMISSIONS USING COMBUSTION PARAMETERS IN A DIESEL ENGINE FITTED WITH CERAMIC FOAM DIESEL PARTICULATE FILTER THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUES

  • BOSE N.;RAGHAVAN I.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.95-105
    • /
    • 2005
  • Diesel engines have low specific fuel consumption, but high particulate emissions, mainly soot. Diesel soot is suspected to have significant effects on the health of living beings and might also affect global warming. Hence stringent measures have been put in place in a number of countries and will be even stronger in the near future. Diesel engines require either advanced integrated exhaust after treatment systems or modified engine models to meet the statutory norms. Experimental analysis to study the emission characteristics is a time consuming affair. In such situations, the real picture of engine control can be obtained by the modeling of trend prediction. In this article, an effort has been made to predict emissions smoke and NO$_{x}$ using cylinder combustion derived parameters and diesel particulate filter data, with artificial neural network techniques in MATLAB environment. The model is based on three layer neural network with a back propagation learning algorithm. The training and test data of emissions were collected from experimental set up in the laboratory for different loads. The network is trained to predict the values of emission with training values. Regression analysis between test and predicted value from neural network shows least error. This approach helps in the reduction of the experimentation required to determine the smoke and NO$_{x}$ for the catalyst coated filters.

Artificial neural network reconstructs core power distribution

  • Li, Wenhuai;Ding, Peng;Xia, Wenqing;Chen, Shu;Yu, Fengwan;Duan, Chengjie;Cui, Dawei;Chen, Chen
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.617-626
    • /
    • 2022
  • To effectively monitor the variety of distributions of neutron flux, fuel power or temperatures in the reactor core, usually the ex-core and in-core neutron detectors are employed. The thermocouples for temperature measurement are installed in the coolant inlet or outlet of the respective fuel assemblies. It is necessary to reconstruct the measurement information of the whole reactor position. However, the reading of different types of detector in the core reflects different aspects of the 3D power distribution. The feasibility of reconstruction the core three-dimension power distribution by using different combinations of in-core, ex-core and thermocouples detectors is analyzed in this paper to synthesize the useful information of various detectors. A comparison of multilayer perceptron (MLP) network and radial basis function (RBF) network is performed. RBF results are more extreme precision but also more sensitivity to detector failure and uncertainty, compare to MLP networks. This is because that localized neural network could offer conservative regression in RBF. Adding random disturbance in training dataset is helpful to reduce the influence of detector failure and uncertainty. Some convolution neural networks seem to be helpful to get more accurate results by use more spatial layout information, though relative researches are still under way.

Two-phase flow pattern online monitoring system based on convolutional neural network and transfer learning

  • Hong Xu;Tao Tang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4751-4758
    • /
    • 2022
  • Two-phase flow may almost exist in every branch of the energy industry. For the corresponding engineering design, it is very essential and crucial to monitor flow patterns and their transitions accurately. With the high-speed development and success of deep learning based on convolutional neural network (CNN), the study of flow pattern identification recently almost focused on this methodology. Additionally, the photographing technique has attractive implementation features as well, since it is normally considerably less expensive than other techniques. The development of such a two-phase flow pattern online monitoring system is the objective of this work, which seldom studied before. The ongoing preliminary engineering design (including hardware and software) of the system are introduced. The flow pattern identification method based on CNNs and transfer learning was discussed in detail. Several potential CNN candidates such as ALexNet, VggNet16 and ResNets were introduced and compared with each other based on a flow pattern dataset. According to the results, ResNet50 is the most promising CNN network for the system owing to its high precision, fast classification and strong robustness. This work can be a reference for the online monitoring system design in the energy system.

Passive sonar signal classification using graph neural network based on image patch (영상 패치 기반 그래프 신경망을 이용한 수동소나 신호분류)

  • Guhn Hyeok Ko;Kibae Lee;Chong Hyun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.234-242
    • /
    • 2024
  • We propose a passive sonar signal classification algorithm using Graph Neural Network (GNN). The proposed algorithm segments spectrograms into image patches and represents graphs through connections between adjacent image patches. Subsequently, Graph Convolutional Network (GCN) is trained using the represented graphs to classify signals. In experiments with publicly available underwater acoustic data, the proposed algorithm represents the line frequency features of spectrograms in graph form, achieving an impressive classification accuracy of 92.50 %. This result demonstrates a 8.15 % higher classification accuracy compared to conventional Convolutional Neural Network (CNN).