• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.043 seconds

Bayesian Analysis for Neural Network Models

  • Chung, Younshik;Jung, Jinhyouk;Kim, Chansoo
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.155-166
    • /
    • 2002
  • Neural networks have been studied as a popular tool for classification and they are very flexible. Also, they are used for many applications of pattern classification and pattern recognition. This paper focuses on Bayesian approach to feed-forward neural networks with single hidden layer of units with logistic activation. In this model, we are interested in deciding the number of nodes of neural network model with p input units, one hidden layer with m hidden nodes and one output unit in Bayesian setup for fixed m. Here, we use the latent variable into the prior of the coefficient regression, and we introduce the 'sequential step' which is based on the idea of the data augmentation by Tanner and Wong(1787). The MCMC method(Gibbs sampler and Metropolish algorithm) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data.

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법을 이용한 이동형 로봇의 자율주행 제어시스템 개발)

  • 김휘동;양승윤;전완수;안병국;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.130-134
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Channel Equalization using Fuzzy-ARTMAP Neural Network

  • Lee, Jung-Sik;Kim, Jin-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.705-711
    • /
    • 2003
  • This paper studies the application of a fuzzy-ARTMAP neural network to digital communications channel equalization. This approach provides new solutions for solving the problems, such as complexity and long training, which found when implementing the previously developed neural-basis equalizers. The proposed fuzzy-ARTMAP equalizer is fast and easy to train and includes capabilities not found in other neural network approaches; a small number of parameters, no requirements for the choice of initial weights, automatic increase of hidden units, no risk of getting trapped in local minima, and the capability of adding new data without retraining previously trained data. In simulation studies, binary signals were generated at random in a linear channel with Gaussian noise. The performance of the proposed equalizer is compared with other neural net basis equalizers, specifically MLP and RBF equalizers.

The Modeling of Chaotic Nonlinear Systems Using Wavelet Neural Networks (웨이블렛 신경 회로망을 이용한 혼돈 비선형 시스템의 모델링)

  • Park, Sang-Woo;Choi, Jong-Tae;Yoon, Tae-Sung;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2034-2036
    • /
    • 2002
  • In this paper, we propose the modeling of a chaotic nonlinear system using wavelet neural networks. In our modeling, we used the parameter adjusting method as the training method of a wavelet neural network. The difference between the actual output of a nonlinear chaotic system and that of a wavelet neural network adjusts the parameters of a wavelet neural network using the gradient-descent method. To verify the efficiency of this paper, we perform the simulation using Duffing system, which is a representative continuous time chaotic nonlinear system.

  • PDF

A Design of the Fuzzy Neural Network Image Recognizer

  • Kim, Dae-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.50-57
    • /
    • 1992
  • Neural networks have become more popular recently and are now being applied to numerous fiedls. One of the major applications of neural networks is image recognition. Various image recognition system have been proposed so far, but there is no definite solution yet. In this paper, we propose a design of Fuzzy Neural Network Image Recognizer(FNNIR). Our model uses a fuzzy neural network model, named SONN[KIM90]. This model returns the information of the number of clusters and cluster and cluster center values for a given image data ste. Unlike the well-kinwn backpropagation technique, we do not need retraining for new data. Our newly designed image recongitionsystem FNNIR that uses fuzzy merger is proposed and experimented for a sample color image.

  • PDF

Constructing Neural Networks Using Genetic Algorithm and Learning Neural Networks Using Various Learning Algorithms (유전알고리즘을 이용한 신경망의 구성 및 다양한 학습 알고리즘을 이용한 신경망의 학습)

  • 양영순;한상민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.216-225
    • /
    • 1998
  • Although artificial neural network based on backpropagation algorithm is an excellent system simulator, it has still unsolved problems of its structure-decision and learning method. That is, we cannot find a general approach to decide the structure of the neural network and cannot train it satisfactorily because of the local optimum point which it frequently falls into. In addition, although there are many successful applications using backpropagation learning algorithm, there are few efforts to improve the learning algorithm itself. In this study, we suggest a general way to construct the hidden layer of the neural network using binary genetic algorithm and also propose the various learning methods by which the global minimum value of the teaming error can be obtained. A XOR problem and line heating problems are investigated as examples.

  • PDF

Nonlinear system control using neural network (신경회로망을 이용한 비선형 시스템 제어)

  • 성홍석;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.32-39
    • /
    • 1996
  • In this paper, we describe the algorithm which controls an unknown nonlinear system with multilayer neural network. The multilayer neural netowrk can be used to approximate any continuous function to any desired degree of accuracy. With the former fact, we approximate unknown nonlinear function on the nonlinear system by using of multilayer neural netowrk. The weights on the hidden layer of multilayer neural network are updated by gradient method. The weight-update rule on the output layer is derived to satisfy lyapunov stability. Also, we obtain secondary controller form deriving step. The global control system consists of controller using feedback linearization method and secondary controller is order to satisfy layapunov stability. The proposed control algorithm is verified through computer simulation.

  • PDF

Neural Networks for Optimization Problem with Nonlinear Constraints (비선형제한조건을 갖는 최적화문제 신경회로망)

  • Kang, Min-Je
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Hopfield introduced the neural network for linear program with linear constraints. In this paper, Hopfield neural network has been generalized to solve the optimization problems including nonlinear constraints. Also, it has been discussed the methods hew to reconcile optimization problem with neural networks and how to implement the circuits.

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

The Design of Predictive Controller for Chaotic Nonlinear Systems Using Wavelet Neural Networks (웨이블릿 신경 회로망을 이용한 혼돈 비선형 시스템에 대한 예측 제어기 설계)

  • 박상우;최종태;최윤호;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.183-186
    • /
    • 2002
  • In this paper, a predictive control method using wavelet neural network for chaotic nonlinear systems is presented. In our method, we use the adjusting method of the parameter for the training a wavelet neural network. The control signals are directly obtained by minimizing the difference between a reference signal and the output of a wavelet neural network. To verify the efficiency of our method, we apply it to the Duffing and the Henon system, which are a representative continuous and discrete time chaotic nonlinear system respectively.