• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.054 seconds

Iterative neural network strategy for static model identification of an FRP deck

  • Kim, Dookie;Kim, Dong Hyawn;Cui, Jintao;Seo, Hyeong Yeol;Lee, Young Ho
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • This study proposes a system identification technique for a fiber-reinforced polymer deck with neural networks. Neural networks are trained for system identification and the identified structure gives training data in return. This process is repeated until the identified parameters converge. Hence, the proposed algorithm is called an iterative neural network scheme. The proposed algorithm also relies on recent developments in the experimental design of the response surface method. The proposed strategy is verified with known systems and applied to a fiber-reinforced polymer bridge deck with experimental data.

Recognition of vehicle number plate using multi backpropagation neural network (다중 역전파 신경망을 이용한 차량 번호판의 인식)

  • 최재호;조범준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2432-2438
    • /
    • 1997
  • This paper proposes recognition system using multi-backpropagation neural networks rather than single backpropagation neural network to enhance the rate of character recognition resultsing from extracting the region of velhicle number in that the image of vehicle number plate from CCD camera has a distinguish feature, that is, illumination of a pattern. The experiment in this paper shows an output that the method using multi-backpropagation neural networks rather than signal backpropagation neural network takes less training time for computation and also has higher recognition rage of vehicle number.

  • PDF

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법에 의한 이동 로봇의 자율주행 제어시스템 개발)

  • 김종수;한덕기;김영규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.250-254
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Development of an optimal measuring device selection system using neural networks (Neural Network을 이용한 최적 측정장비 결정 시스템 개발)

  • 손석배;박현풍;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.299-302
    • /
    • 2000
  • Various types of measuring devices are used for reverse engineering and inspection in different fields of industry such as automotive, aerospace, computer graphics, and home appliance. In order to measure a part easily and efficiently, it is important to select appropriate measuring device considering the characteristics of each measuring machine and part information. In this research, an optimal measuring device selection system using neural networks is proposed. There are two major steps: Firstly, the measuring information such as curvature, normal, type of surface, edge, and facet approximation is extracted from the CAD model. Second, the best suitable measuring device is proposed using the neural network system based on the knowledge of the measuring parameters and the measuring resources. An example of machine selection is implemented to evaluate the performance of the system.

  • PDF

The Azimuth and Velocity Control of a Movile Robot with Two Drive Wheel by Neutral-Fuzzy Control Method (뉴럴-퍼지제어기법에 의한 두 구동휠을 갖는 이동 로봇의 자세 및 속도 제어)

  • 한성현
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.84-95
    • /
    • 1997
  • This paper presents a new approach to the design speed and azimuth control of a mobile robot with drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frmework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simple the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

An inverse dynamic torque control of a six-jointed robot arm using neural networks (신경회로를 이용한 6축 로보트의 역동력학적 토크 제어)

  • 조문증;오세영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.1-6
    • /
    • 1990
  • Neural network is a computational model of ft biological nervous system developed ID exploit its intelligence and parallelism. Applying neural networks so robots creates many advantages over conventional control methods such as learning, real-time control, and continuous performance improvement through training and adaptation. In this paper, dynamic control of a six-link robot will be presented using neural networks. The neural network model used in this paper is the backpropagation network. Simulated control of the PUMA 560 am shows that it can move a high speed as well as adapt to unforseen load changes and sensor noise. The results are compared with the conventional PD control scheme.

  • PDF

A Study on Input Pattern Generation of Neural-Networks for Character Recognition (문자인식 시스템을 위한 신경망 입력패턴 생성에 관한 연구)

  • Shin, Myong-Jun;Kim, Sung-Jong;Son, Young-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.129-131
    • /
    • 2006
  • The performances of neural network systems mainly depend on the kind and the number of input patterns for its training. Hence, the kind of input patterns as well as its number is very important for the character recognition system using back-propagation network. The more input patters are used, the better the system recognizes various characters. However, training is not always successful as the number of input patters increases. Moreover, there exists a limit to consider many input patterns of the recognition system for cursive script characters. In this paper we present a new character recognition system using the back-propagation neural networks. By using an additional neural network, an input pattern generation method is provided for increasing the recognition ratio and a successful training. We firstly introduce the structure of the proposed system. Then, the character recognition system is investigated through some experiments.

  • PDF

Neural Robust Control for Perturbed Crane Systems

  • Cho Hyun-Cheol;Fadali M.Sami;Lee Young-Jin;Lee Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.591-601
    • /
    • 2006
  • In this paper, we present a new control methodology for perturbed crane systems. Nonlinear crane systems are transformed to linear models by feedback linearization. An inverse dynamic equation is applied to compute the system PD control force. The PD control parameters are selected based on a nominal model and are therefore suboptimal for a perturbed system. To achieve the desired performance despite model perturbations, we construct a neural network auxiliary controller to compensate for modeling errors and disturbances. The overall control input is the sum of the nominal PD control and the neural auxiliary control. The neural network is iteratively trained with a perturbed system until acceptable performance is attained. We apply the proposed control scheme to 2- and 3-degree-of-freedom (D.O.F.) crane systems, with known bounds on the payload mass. The effectiveness of the control approach is numerically demonstrated through computer simulation experiments.

Design of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Technique (퍼자-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계)

  • 김휘동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.199-203
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Dynamic Control of A Sik-link Robot Using Neural Networks (신경회로를 이용한 6축 Robot의 Dynamic Control)

  • Joe, Moon-Jeung;Oh, Se-Young
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.500-503
    • /
    • 1990
  • Neural network is a computational model of the biological nervous system developed to exploit its intelligence and parallelism. Applying neural networks to robots creates many advantages over conventional control methods such as learning, real-time control, and continuous performance improvement through training and adaptation. In this paper, dynamic control of a six-link robot will be presented using neural networks. The neural network model used in this paper is the backpropagation network. Simulated control of the PUMA 560 arm shows that it can move at high speed as well as adapt to unforseen load changes. The results are compared with the conventional PD control scheme.

  • PDF