• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.036 seconds

A Jittering-based Neural Network Ensemble Approach for Regionalized Low-flow Frequency Analysis

  • Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.382-382
    • /
    • 2020
  • 과거 많은 연구에서 다수의 모형의 결과를 이용한 앙상블 방법론은 인공지능 모형 (artificial neural network)의 예측 능력에 향상을 갖고 온다 논하였다. 본 연구에서는 미계측유역의 저수량(low flow)의 예측을 위하여 Jittering을 기반으로 한 인공지능 모형을 제시하고자 한다. 기본적인 방법론은 설명변수들에게 백색 잡음(white noise)를 삽입하여 훈련되는 자료를 증가시키는 것이다. Jittering을 기반으로 한 인공지능 모형에 대한 효과를 검증하기 위하여 본 연구에서는 Multi-output neural network model을 기반으로 모형을 구축하였다. 다음으로 Jittering을 기반으로 한 앙상블 모형을 variable importance measuring algorithm과 결합시켜서 유역특성치와 예측되는 저수량의 특성치들의 관계를 추론하였다. 본 연구에서 사용되는 방법론들의 효용성을 평가하기 위해서 미동북부에 위치하고 있는 총 207개의 유역을 사용하였다. 결과적으로 본 연구에서 제시한 Jittering을 기반으로 한 인공지능 앙상블 모형은 단일예측모형 (single modeling approach)을 정확도 측면에서 우수한 것으로 확인되었다. 또한, 적은 숫자의 앙상블 모형에서도 그 정확성이 단일예측모형보다 우수한 것을 확인하였다. 마지막으로 본 연구에서는 유역특성치들의 효과가 살펴보고자 하는 저수량의 특성치들에 따라서 일관적으로 영향을 미치거나 그 중요도가 변화하는 것을 확인하였다.

  • PDF

A Study of Pattern Classification System Design Using Wavelet Neural Network and EEG Signal Classification (웨이블릿 신경망을 이용한 패턴 분류 시스템 설계 및 EEG 신호 분류에 대한 연구)

  • Im, Seong-Gil;Park, Chan-Ho;Lee, Hyeon-Su
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.32-43
    • /
    • 2002
  • In this paper, we propose a pattern classification system for digital signal which is based on neural networks. The proposed system consists of two models of neural network. The first part is a wavelet neural network whose role is a feature extraction. For this part, we compare existing models of wavelet networks and propose a new model for feature extraction. The other part is a wavelet network for pattern classification. We modify the structure of previous wavelet network for pattern classification and propose a learning method. The inputs of the pattern classification wavelet network is connection weights, dilation and translation parameters in hidden nodes of feature extraction network. And the output is a class of the signal which is input of feature extraction network. The proposed system is, applied to classification of EEG signal based on frequency.

Fuzzy-ARTMAP based Multi-User Detection

  • Lee, Jung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.172-178
    • /
    • 2012
  • This paper studies the application of a fuzzy-ARTMAP (FAM) neural network to multi-user detector (MUD) for direct sequence (DS)-code division multiple access (CDMA) system. This method shows new solution for solving the problems, such as complexity and long training, which is found when implementing the previously developed neural-basis MUDs. The proposed FAM based MUD is fast and easy to train and includes capabilities not found in other neural network approaches; a small number of parameters, no requirements for the choice of initial weights, automatic increase of hidden units, no risk of getting trapped in local minima, and the capabilities of adding new data without retraining previously trained data. In simulation studies, binary signals were generated at random in a linear channel with Gaussian noise. The performance of FAM based MUD is compared with other neural net based MUDs in terms of the bit error rate.

Design of maneuvering target tracking system using neural network as an input estimator (입력 추정기로서의 신경회로망을 이용한 기동 표적 추적 시스템 설계)

  • 김행구;진승희;박진배;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.524-527
    • /
    • 1997
  • Conventional target tracking algorithms based on the linear estimation techniques perform quite efficiently when the target motion does not involve maneuvers. Target maneuvers involving short term accelerations, however, cause a bias in the measurement sequence. Accurate compensation for the bias requires processing more samples of which adds to the computational complexity. The primary motivation for employing a neural network for this task comes from the efficiency with which more features can be as inputs for bias compensation. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The parallel processing capability of a properly trained neural network can permit fast processing of features to yield correct acceleration estimates and hence can take the burden off the primary Kalman filter which still provides the target position and velocity estimates.

  • PDF

Multi-Target Tracking System based on Neural Network Data Association Algorithm (신경회로망 데이터 연관 알고리즘에 근거한 다중표적 추적 시스템)

  • 이진호;류충상;김은수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.11
    • /
    • pp.70-77
    • /
    • 1992
  • Generally, the conventional tracking algorithms are very limited in the practical applications because of that the computation load is exponentially increased as the number of targets being tracked is increase. Recently, to overcome this kind of limitation, some new tracking methods based on neural network algorithms which have learning and parallel processing capabilities are introduced. By application of neural networks to multi-target tracking problems, the tracking system can be made computationally independent of the number of objects being tracked, through their characteristics of massive parallelism and dense interconnectivity. In this paper, a new neural network tracking algorithm, which has capability of adaptive target tracking with little increase of the amount of calculation under the clutter and noisy environments, is suggested and the possibility of real-time multi-target tracking system based on neural networks is also demonstrated through some good computer simulation results.

  • PDF

Hybrid 신경망을 이용한 산업폐수 공정 모델링

  • Lee, Dae-Seong;Park, Jong-Mun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.133-136
    • /
    • 2000
  • In recent years, hybrid neural network approaches which combine neural networks and mechanistic models have been gaining considerable interests. These approaches are potentially very efficient to obtain more accurate predictions of process dynamics by combining mechanistic and neural models in such a way that the neural network model properly captures unknown and nonlinear parts of the mechanistic model. In this work, such an approach was applied in the modeling of a full-scale coke wastewater treatment process. First, a simplified mechanistic model was developed based on the Activated Sludge Model No.1 and the specific process knowledge, Then neural network was incorporated with the mechanistic model to compensate the errors between the mechanistic model and the process data. Simulation and actual process data showed that the hybrid modeling approach could predict accurate process dynamics of industrial wastewater treatment plant. The promising results indicated that the hybrid modeling approach could be a useful tool for accurate and cost-effective modeling of biochemical processes.

  • PDF

Robustness Analysis of Industrial Manipulator Using Neural-Network (신경회로망을 이용한 산업용 매니퓰레이터의 견실성 해석)

  • Lee, Jin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.125-130
    • /
    • 1997
  • In this paper, it is presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C3x is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, andsuitable for implementation of robust control.

  • PDF

Closed Loop System Identification of Steam Generator Using Neural Networks (신경 회로망을 이용한 증기 발생기의 폐 루프 시스템 규명)

  • Park, Jong-Ho;Han, Hoo-Seuk;Chong, Kil-To
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.78-86
    • /
    • 1999
  • The improvement of the water level control is important since it will prevent the steam generator trip so that improve the reliability and credibility of operation system. In this paper, the closed loop system identification is performed which can be used for the system monitoring and prediction of the system response. The model also can be used for the prediction control. Irving model is used as a steam generator model. The plant is an open loop unstable and non-minimum phase system. Fuzzy controller stabilize the system and the stable controller stabilize the system and the stable closed loop system is identified using neural networks. The obtained neural network model is validated using the untrained input and output. The results of computer simulation show the obtained Neural Network model represents the closed loop system well.

  • PDF

Neural Network Forecasting Using Data Mining Classifiers Based on Structural Change: Application to Stock Price Index

  • Oh, Kyong-Joo;Han, Ingoo
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.543-556
    • /
    • 2001
  • This study suggests integrated neural network modes for he stock price index forecasting using change-point detection. The basic concept of this proposed model is to obtain significant intervals occurred by change points, identify them as change-point groups, and reflect them in stock price index forecasting. The model is composed of three phases. The first phase is to detect successive structural changes in stock price index dataset. The second phase is to forecast change-point group with various data mining classifiers. The final phase is to forecast the stock price index with backpropagation neural networks. The proposed model is applied to the stock price index forecasting. This study then examines the predictability of integrated neural network models and compares the performance of data mining classifiers.

  • PDF

A neural network approach for simulating stationary stochastic processes

  • Beer, Michael;Spanos, Pol D.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.71-94
    • /
    • 2009
  • In this paper a procedure for Monte Carlo simulation of univariate stationary stochastic processes with the aid of neural networks is presented. Neural networks operate model-free and, thus, circumvent the need of specifying a priori statistical properties of the process, as needed traditionally. This is particularly advantageous when only limited data are available. A neural network can capture the "pattern" of a short observed time series. Afterwards, it can directly generate stochastic process realizations which capture the properties of the underlying data. In the present study a simple feed-forward network with focused time-memory is utilized. The proposed procedure is demonstrated by examples of Monte Carlo simulation, by synthesis of future values of an initially short single process record.