• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.04 seconds

Land use classification using CBERS-1 data

  • Wang, Huarui;Liu, Aixia;Lu, Zhenhjun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.709-714
    • /
    • 2002
  • This paper discussed and analyzed results of different classification algorithms for land use classification in arid and semiarid areas using CBERS-1 image, which in case of our study is Shihezi Municipality, Xinjiang Province. Three types of classifiers are included in our experiment, including the Maximum Likelihood classifier, BP neural network classifier and Fuzzy-ARTMAP neural network classifier. The classification results showed that the classification accuracy of Fuzzy-ARTMAP was the best among three classifiers, increased by 10.69% and 6.84% than Maximum likelihood and BP neural network, respectively. Meanwhile, the result also confirmed the practicability of CBERS-1 image in land use survey.

  • PDF

Stabilization of Inverted Pendulum Using Neural Network with Genetic Algorithm

  • Jin, Dan;Kim, Kab-Il;Son, Young-I.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.425-428
    • /
    • 2003
  • In this paper, the stabilization of an inverted pendulum system is studied. Here, the PID control method is adopted to make the system stable. In order to adjust the PID gains, a three-layer neural network, which is based on the back propagation method, is used. Meanwhile, the time for training the neural network depends on the initial values of PID gains and connection weights. Hence, the genetic algorithm Is considered to shorten the time to find the desired values. Simulation results show the effectiveness of the proposed approach.

  • PDF

Complete Coverage Path Planning of Cleaning Robot

  • Liu, Jiang;Kim, Kab-Il;Son, Young-I.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.429-432
    • /
    • 2003
  • In this paper, a novel neural network approach is proposed for cleaning robot to complete coverage path planning with obstacle avoidance in stationary and dynamic environments. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation derived from Hodgkin and Huxley's membrane equation. There are only local lateral connections among neurons. The robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot location without any prior knowledge of the dynamic environment.

  • PDF

Face Detection Algorithm Using Pulse-Coupled Neural Network (Pulse-Coupled Neural Network를 이용한 얼굴추출 알고리즘)

  • Lim, Young-Wan;Na, Jin-Hee;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.105-107
    • /
    • 2004
  • In this work, we suggested the method which improves the efficiency of the face detection algorithm using Pulse-Coupled Neural Network. Face detection algorithm which uses the color information is independent on size, angle, and obstruction of a face. But the use of color information encounters some problems arising from skin-tone color in the background, intensity variation within faces, and presence of random noise, and so on. Depending on these conditions, we obtained the mean and variance of skin-tone colors by experiments. Then we introduce a preprocess that the pixel with a mean value of skin-tone colors has highest level value(255) and the other pixels in the skin-tone region have values between 0 and 255 according to a normal distribution with a variance. This preprocess leads to an easy decision of the linking parameters.

  • PDF

Process Design of a Hot Forged Product Using the Artificial Neural Network and the Statistical Design of Experiments (신경망과 실험계획법을 이용한 열간 단조품의 공정설계)

  • 김동환;김동진;김호관;김병민;최재찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.15-24
    • /
    • 1998
  • In this research. we have proposed a new technique to determine .the combination of design parameters for the process design of a hot forged product using artificial neural network(ANN) and statistical design of experiments(DOE). The investigated problem involves the adequate selection of the aspect ratio of billet, the ram velocity and the friction factor as design parameters. An optimal billet satisfying the forming limitation, die filling, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of artificial neural network and considering the analysis of mean and variation on the functional requirement. This methodology will be helpful in designing and controlling parameters on the shop floor which would yield the best design solution.

  • PDF

Adaptive Control Incorporating Neural Network for a Pneumatic Servo Cylinder (공압 서보실린더의 신경회로망 결합형 적응제어)

  • Jang Yun Seong;Cho Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.88-95
    • /
    • 2005
  • This paper presents a design scheme of model reference adaptive control incorporating a Neural Network for a pneumatic servo system. The parameters of discrete-time model of plant are estimated by using the recursive least square method. Neural Network is utilized in order to compensate the nonlinear nature of plant such as compressibility of air and frictions present in cylinder. The experiment of a trajectory tracking control using the proposed control scheme has been performed and its effectiveness has been proved by comparing with the results of a model reference adaptive control.

Three Dimensional Environment Modeling for Mobile Robots Using Growing Neural Gas Network

  • Kim, Min-Young;Cho, Hyung-Suck;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.30.2-30
    • /
    • 2001
  • As the era of the human friendly robot looms, the intelligent autonomous mobile robots have obtained tremendous interests in recent years. The robots may be service robots for serving human or industrial robots for replacing human. For the coexistance with human, the robots must be able to feel and recognize three dimensional space that human live. In this paper, we propose three dimensional environmental modeling method based on a neural network technique called Growing Neural Gas Network. The purpose of this neural network is to generate a graphical structure which reflects the topology of the input space. Through this method, the robots´ surroundings are autonomously segmented ...

  • PDF

Development of Odor Sensor Array using Pattern Classification Technology (패턴분류 기술을 이용한 후각센서 어레이 개발)

  • Park, Tae-Won;Lee, Jin-Ho;Cho, Young-Chung;Ahn, Chul
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.454-459
    • /
    • 2006
  • There are two main streams for pattern classification technology One is the method using PCA (Principal Component Analysis) and the other is the method using Neural network. Both of them have merits and demerits. In general, using PCA is so simple while using neural network can improve algorithm continually. Algorithm using neural network needs so many calculations rendering very slow response. In this work, an attempt is made to develop algorithms adopting both PCA and neural network merits for simpler, but faster and smarter.

  • PDF

Sweet Persimmons Classification based on a Mixed Two-Step Synthetic Neural Network (혼합 2단계 합성 신경망을 이용한 단감 분류)

  • Roh, SeungHee;Park, DongGyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1358-1368
    • /
    • 2021
  • A research on agricultural automation is a main issues to overcome the shortage of labor in Korea. A sweet persimmon farmers need much time and labors for classifying profitable sweet persimmon and ill profitable products. In this paper, we propose a mixed two-step synthetic neural network model for efficiently classifying sweet persimmon images. In this model, we suggested a surface direction classification model and a quality screening model which constructed from image data sets. Also we studied Class Activation Mapping(CAM) for visualization to easily inspect the quality of the classified products. The proposed mixed two-step model showed high performance compared to the simple binary classification model and the multi-class classification model, and it was possible to easily identify the weak parts of the classification in a dataset.

Optimization of Posture for Humanoid Robot Using Artificial Intelligence (인공지능을 이용한 휴머노이드 로봇의 자세 최적화)

  • Choi, Kook-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.