• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.05 seconds

Development of a field-applicable Neural Network classifier for the classification of surface defects of cold rolled steel strips (냉연강판의 표면결함 분류를 위한 현장 적용용 신경망 분류기 개발)

  • Moon C.I.;Choi S.H.;Joo W.J.;Kim G.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.61-62
    • /
    • 2006
  • A new neural network classifier is proposed for the automatic real-time surface inspection of high-speed cold steel strips having 11 different types of defects. 46 geometrical and gray-level features are extracted for the defect classification. 3241 samples of Posco's Kwangyang steel factory are used for training and testing the neural network classifier. The developed classifier produces plausible 15% error rate which is much better than 20-30% error rate of human vision inspection adopted in most of domestic steel factories.

  • PDF

Analytic Determination of 3D Grasping points Using Neural Network (신경망을 이용한 3차원 잡는 점들의 해석적 결정)

  • 이현기;한창우;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.112-117
    • /
    • 2003
  • This paper deals with the problem of synthesis of the 3-dimensional Grasp Planning. In previous studies the genetic algorithm has been used to find optimal grasping points, but it had a limitation such as the determination time of grasping points was so long. To overcome this limitation we proposed a new algorithm which employs the Neural Network. In the Neural network we chose input parameters based on the shape of the object and output parameters resulted from optimization with the GA method. In this study the GRNN method is employed, it has been trained by the result value of optimization method and it has been tested by known object. The algorithm is verified by computer simulation.

Prediction of Arc Welding Quality through Artificial Neural Network (신경망 알고리즘을 이용한 아크 용접부 품질 예측)

  • Cho, Jungho
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.44-48
    • /
    • 2013
  • Artificial neural network (ANN) model is applied to predict arc welding process window for automotive steel plate. Target weldment was various automotive steel plate combination with lap fillet joint. The accuracy of prediction was evaluated through comparison experimental result to ANN simulation. The effect of ANN variables on the accuracy is investigated such as number of hidden layers, perceptrons and transfer function type. A static back propagation model is established and tested. The result shows comparatively accurate predictability of the suggested ANN model. However, it restricts to use nonlinear transfer function instead of linear type and suggests only one single hidden layer rather than multiple ones to get better accuracy. In addition to this, obvious fact is affirmed again that the more perceptrons guarantee the better accuracy under the precondition that there are enough experimental database to train the neural network.

Development of In process Condition Monitoring System on Turning Process using Artificial Neural Network. (신경회로망 모델을 이용한 선삭 공정의 실시간 이상진단 시스템의 개발)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.14-21
    • /
    • 1998
  • The in-process detection of the state of cutting tool is one of the most important technical problem in Intelligent Machining System. This paper presents a method of detecting the state of cutting tool in turning process, by using Artificial Neural Network. In order to sense the state of cutting tool. the sensor fusion of an acoustic emission sensor and a force sensor is applied in this paper. It is shown that AErms and three directional dynamic mean cutting forces are sensitive to the tool wear. Therefore the six pattern features that is, the four sensory signal features and two cutting conditions are selected for the monitoring system with Artificial Neural Network. The proposed monitoring system shows a good recogniton rate for the different cutting conditions.

  • PDF

Prediction of Jominy Curve using Artificial Neural Network (인공 신경망 모델을 활용한 조미니 곡선 예측)

  • Lee, Woonjae;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • This work demonstrated the application of an artificial neural network model for predicting the Jominy hardness curve by considering 13 alloying elements in low alloy steels. End-quench Jominy tests were carried out according to ASTM A255 standard method for 1197 samples. The hardness values of Jominy sample were measured at different points from the quenched end. The developed artificial neural network model predicted the Jominy curve with high accuracy ($R^2=0.9969$ for training and $R^2=0.9956$ for verification). In addition, the model was used to investigate the average sensitivity of input variables to hardness change.

A Study on the Two-Phased Hybrid Neural Network Approach to an Effective Decision-Making (효과적인 의사결정을 위한 2단계 하이브리드 인공신경망 접근방법에 관한 연구)

  • Lee, Geon-Chang
    • Asia pacific journal of information systems
    • /
    • v.5 no.1
    • /
    • pp.36-51
    • /
    • 1995
  • 본 논문에서는 비구조적인 의사결정문제를 효과적으로 해결하기 위하여 감독학습 인공신경망 모형과 비감독학습 인공신경망 모형을 결합한 하이브리드 인공신경망 모형인 HYNEN(HYbrid NEural Network) 모형을 제안한다. HYNEN모형은 주어진 자료를 클러스터화 하는 CNN(Clustering Neural Network)과 최종적인 출력을 제공하는 ONN(Output Neural Network)의 2단계로 구성되어 있다. 먼저 CNN에서는 주어진 자료로부터 적정한 퍼지규칙을 찾기 위하여 클러스터를 구성한다. 그리고 이러한 클러스터를 지식베이스로하여 ONN에서 최종적인 의사결정을 한다. CNN에서는 SOFM(Self Organizing Feature Map)과 LVQ(Learning Vector Quantization)를 클러스터를 만든 후 역전파학습 인공신경망 모형으로 이를 학습한다. ONN에서는 역전파학습 인공신경망 모형을 이용하여 각 클러스터의 내용을 학습한다. 제안된 HYNEN 모형을 우리나라 기업의 도산자료에 적용하여 그 결과를 다변량 판별분석법(MDA:Multivariate Discriminant Analysis)과 ACLS(Analog Concept Learning System) 퍼지 ARTMAP 그리고 기존의 역전파학습 인공신경망에 의한 실험결과와 비교하였다.

  • PDF

Application of Neural Network to Prediction and estimation of Rolling Condition for Hydraulic members (유압구동부재의 구름운동상태 예지 및 판정을 위한 신경 회로망의 적용)

  • 조연상;김동호;박흥식;전태옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.646-649
    • /
    • 2002
  • It can be effect on diagnosis of hydraulic machining system to analyze working conditions with shape characteristics of wear debris in a lubricated machine. But, in order to predict and estimate working conditions, it is need to analyze the shape characteristics of wear debris and to identify. Therefor, if shape characteristics of wear debris is identified by computer image analysis and the neural network, it is possible to find the cause and effect of moving condition. In this study, wear debris in the lubricant oil are extracted by membrane filter, and the quantitative value of shape characteristics of wear debris we calculated by the digital image processing. This morphological informations are studied and identified by the artificial neural network. The purpose of this study is In apply morphological characteristics of wear debris to prediction and estimation of working condition in hydraulic driving systems.

  • PDF

The prediction of the optimum injection conditions of aspherical lens by using FEM and Neural Network (비구면 광학렌즈 성형에 있어서 유한요소법과 신경회로망을 이용한 사출조건 예측 시스템의 개발)

  • 곽태수;스즈키토오루;오오모리히토시;배원병
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.168-171
    • /
    • 2002
  • A neural network model for predicting the quality or soundness of the injected plastic aspherical lens based on process parameters has been developed. The approach uses a Real Time Recurrent Neural Network 4-5-2 (RTRN) trained based on input/output data that were taken from FE analysis worts carried out through a CAE software. The system has been developed to search an optimum set of process parameters and reduce the time required for planning the conditions of plastic injection molding at the design stage.

  • PDF

Development of Flow Interpolation Model Using Neural Network and its Application in Nakdong River Basin (유량 보간 신경망 모형의 개발 및 낙동강 유역에 적용)

  • Son, Ah Long;Han, Kun Yeon;Kim, Ji Eun
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.5
    • /
    • pp.271-280
    • /
    • 2009
  • The objective of this study is to develop a reliable flow forecasting model based on neural network algorithm in order to provide flow rate at stream sections without flow measurement in Nakdong river. Stream flow rate measured at 8-days interval by Nakdong river environment research center, daily upper dam discharge and precipitation data connecting upstream stage gauge were used in this development. Back propagation neural network and multi-layer with hidden layer that exists between input and output layer are used in model learning and constructing, respectively. Model calibration and verification is conducted based on observed data from 3 station in Nakdong river.

Advanced Scheme for PDR system Using Neural Network (Neural Network를 이용한 PDR 시스템의 정확도 향상 기법)

  • Kwak, Hwy-Kuen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5219-5226
    • /
    • 2014
  • This paper proposes an improved scheme of pedestrian position information system using neural network theory in a GPS-disabled area. Through a learning/obtaining gait pattern and step distance about walk, run, duck walk, crab walk and crawl, the position estimation error could be minimized by rejecting the inertial navigation drift. A portable hardware module was implemented to evaluate the performance of the proposed system. The performance and effectiveness of the suggested algorithm was verified by experiments indoors.