• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.043 seconds

A Study on the Applicability of Neural Network Model for Prediction of tee Apartment Market (아파트시장예측을 위한 신경망분석 적응가능성에 대한 연구)

  • Nam, Young-Woo;Lee, Jeong-Min
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.2 s.30
    • /
    • pp.162-170
    • /
    • 2006
  • Neural network analysis is expected to enhance the forecasting ability for the real estate market. This paper reviews definition, structure, strengths and weaknesses of neural network analysis, and verifies the applicability of neural network analysis for the real estate market. Neural network analysis is compared with regression analysis using the same sample data. The analyses model the macroeconomic parameters that influence the sales price of apartments. The results show that neural network analysis provides better forecasting accuracy than regression analysis does, what confirms the applicability of neural network analysis for the real estate market.

Emotion prediction neural network to understand how emotion is predicted by using heart rate variability measurements

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.75-82
    • /
    • 2017
  • Correct prediction of emotion is essential for developing advanced health devices. For this purpose, neural network has been successfully used. However, interpretation of how a certain emotion is predicted through the emotion prediction neural network is very tough. When interpreting mechanism about how emotion is predicted by using the emotion prediction neural network can be developed, such mechanism can be effectively embedded into highly advanced health-care devices. In this sense, this study proposes a novel approach to interpreting how the emotion prediction neural network yields emotion. Our proposed mechanism is based on HRV (heart rate variability) measurements, which is based on calculating physiological data out of ECG (electrocardiogram) measurements. Experiment dataset with 23 qualified participants were used to obtain the seven HRV measurement such as Mean RR, SDNN, RMSSD, VLF, LF, HF, LF/HF. Then emotion prediction neural network was modelled by using the HRV dataset. By applying the proposed mechanism, a set of explicit mathematical functions could be derived, which are clearly and explicitly interpretable. The proposed mechanism was compared with conventional neural network to show validity.

Design of Hybrid Controller Using Neural Network-Fuzzy (신경망-퍼지 하이브리드 제어기 설계)

  • 신위재
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.54-60
    • /
    • 2002
  • In this paper, we proposed a hybrid neural network-fuzzy controller which compensate a output of neural network controller. Even if learn by neural network controller, it can occur an bad results from disturbance or load variations. So in order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of loaming a inverse model neural network of Plant, so a expected dynamic characteristics of plant can be got. As the results of simulation through the second order plant, we confirmed that the proposed speed controller get a good response compare with a neural network controller. We implemented the controller using the DSP processor and applied in a hydraulic servo system. And then we observed an experimental results.

  • PDF

Probabilistic Neural Network-Based Damage Assessment for Bridge Structures (확률신경망에 기초한 교량구조물의 손상평가)

  • Cho, Hyo-Nam;Kang, Kyoung-Koo;Lee, Sung-Chil;Hur, Choon-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.169-179
    • /
    • 2002
  • This paper presents an efficient algorithm for the estimation of damage location and severity in structure using Probabilistic Neural Network (PNN). Artificial neural network has been being used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems with the conventional neural network are the necessity of many training data for neural network learning and ambiguity in the relation of neural network architecture with convergence of solution. In this paper, PNN is used as a pattern classifier to overcome those problems in the conventional neural network. The basic idea of damage assessment algorithm proposed in this paper is that modal characteristics from a damaged structure are compared with the training patterns which represent the damage in specific element to determine how close it is to training patterns in terms of the probability from PNN. The training pattern that gives a maximum probability implies that the element used in producing the training pattern is considered as a damaged one. The proposed damage assessment algorithm using PNN is applied to a 2-span continuous beam model structure to verify the algorithm.

Accuracy Improvement Method for 1-Bit Convolutional Neural Network (1-Bit 합성곱 신경망을 위한 정확도 향상 기법)

  • Im, Sung-Hoon;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1115-1122
    • /
    • 2018
  • In this paper, we analyze the performance degradation of previous 1-Bit convolutional neural network method and introduce ways to mitigate it. Previous work applies 32-Bit operation to first and last layers. But our method applies 32-Bit operation to second layer too. We also show that nonlinear activation function can be removed after binarizing inputs and weights. In order to verify the method proposed in this paper, we experiment the object detection neural network for korean license plate detection. Our method results in 96.1% accuracy, but the existing method results in 74% accuracy.

High Speed Precision Control of Mobile Robot using Neural Network in Real Time (신경망을 이용한 이동 로봇의 실시간 고속 정밀제어)

  • 주진화;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.95-104
    • /
    • 1999
  • In this paper we propose a fast and precise control algorithm for a mobile robot, which aims at the self-tuning control applying two multi-layered neural networks to the structure of computed torque method. Through this algorithm, the nonlinear terms of external disturbance caused by variable task environments and dynamic model errors are estimated and compensated in real time by a long term neural network which has long learning period to extract the non-linearity globally. A short term neural network which has short teaming period is also used for determining optimal gains of PID compensator in order to come over the high frequency disturbance which is not known a priori, as well as to maintain the stability. To justify the global effectiveness of this algorithm where each of the long term and short term neural networks has its own functions, simulations are peformed. This algorithm can also be utilized to come over the serious shortcoming of neural networks, i.e., inefficiency in real time.

  • PDF

Multiple component neural network architecture design and learning by using PCA (PCA를 이용한 다중 컴포넌트 신경망 구조설계 및 학습)

  • 박찬호;이현수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.107-119
    • /
    • 1996
  • In this paper, we propose multiple component neural network(MCNN) which learn partitioned patterns in each multiple component neural networks by reducing dimensions of input pattern vector using PCA (principal component analysis). Procesed neural network use Oja's rule that has a role of PCA, output patterns are used a slearning patterns on small component neural networks and we call it CBP. For simply not solved patterns in a network, we solves it by regenerating new CBP neural networks and by performing dynamic partitioned pattern learning. Simulation results shows that proposed MCNN neural networks are very small size networks and have very fast learning speed compared with multilayer neural network EBP.

  • PDF

Conversion Tools of Spiking Deep Neural Network based on ONNX (ONNX기반 스파이킹 심층 신경망 변환 도구)

  • Park, Sangmin;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.165-170
    • /
    • 2020
  • The spiking neural network operates in a different mechanism than the existing neural network. The existing neural network transfers the output value to the next neuron via an activation function that does not take into account the biological mechanism for the input value to the neuron that makes up the neural network. In addition, there have been good results using deep structures such as VGGNet, ResNet, SSD and YOLO. spiking neural networks, on the other hand, operate more like the biological mechanism of real neurons than the existing activation function, but studies of deep structures using spiking neurons have not been actively conducted compared to in-depth neural networks using conventional neurons. This paper proposes the method of loading an deep neural network model made from existing neurons into a conversion tool and converting it into a spiking deep neural network through the method of replacing an existing neuron with a spiking neuron.

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

Continuous Digit Recognition Using the Weight Initialization and LR Parser

  • Choi, Ki-Hoon;Lee, Seong-Kwon;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.14-23
    • /
    • 1996
  • This paper is a on the neural network to recognize the phonemes, the weight initialization to reduce learning speed, and LR parser for continuous speech recognition. The neural network spots the phonemes in continuous speech and LR parser parses the output of neural network. The whole phonemes recognized in neural network are divided into several groups which are grouped by the similarity of phonemes, and then each group consists of neural network. Each group of neural network to recognize the phonemes consisits of that recognize the phonemes of their own group and VGNN(Verify Group Neural Network) which judges whether the inputs are their own group or not. The weights of neural network are not initialized with random values but initialized from learning data to reduce learning speed. The LR parsing method applied to this paper is not a method which traces a unique path, but one which traces several possible paths because the output of neural network is not accurate. The parser processes the continuous speech frame by frame as accumulating the output of neural network through several possible paths. If this accumulated path-value drops below the threshold value, this path is deleted in possible parsing paths. This paper applies the continuous speech recognition system to the threshold value, this path is deleted in possible parsing paths. This paper applies the continuous speech recognition system to the continuous Korea digits recognition. The recognition rate of isolated digits is 97% in speaker dependent, and 75% in speaker dependent. The recognition rate of continuous digits is 74% in spaker dependent.

  • PDF