• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.037 seconds

Development of the Efficiency-Evaluation Model for the Mechanism of CO2 Sequestration in a Deep Saline Aquifer (심부 대염수층 CO2 격리 메커니즘에 관한 효율성 평가 모델 개발)

  • Kim, Jung-Gyun;Lee, Young-Soo;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.55-66
    • /
    • 2012
  • The practical way to minimize the greenhouse gas is to reduce the emission of carbon dioxide. For this reason, CCS(Carbon Capture and Storage) technology, which could reduce carbon dioxide emission, has risen as a realistic alternative in recent years. In addition, the researcher is recently working into ways of applying CCS technologies with deep saline aquifer. In this study, the evaluation model on the feasibility of $CO_2$ sequestration in the deep saline aquifer using ANN(Artificial Neural Network) was developed. In order to develop the efficiency-evaluation model, basic model was created in the deep saline aquifer and sensitivity analysis was performed for the aquifer characteristics by utilizing the commercial simulator of GEM. Based on the sensitivity analysis, the factors and ranges affecting $CO_2$ sequestration in the deep saline aquifer were chosen. The result from ANN training scenario were confirmed $CO_2$ sequestration by solubility trapping and residual trapping mechanism. The result from ANN model evaluation indicated there is the increase of correlation coefficient up to 0.99. It has been confirmed that the developed model can be utilized in feasibility of $CO_2$ sequestration at deep saline aquifer.

Estimating Gastrointestinal Transition Location Using CNN-based Gastrointestinal Landmark Classifier (CNN 기반 위장관 랜드마크 분류기를 이용한 위장관 교차점 추정)

  • Jang, Hyeon Woong;Lim, Chang Nam;Park, Ye-Suel;Lee, Gwang Jae;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.3
    • /
    • pp.101-108
    • /
    • 2020
  • Since the performance of deep learning techniques has recently been proven in the field of image processing, there are many attempts to perform classification, analysis, and detection of images using such techniques in various fields. Among them, the expectation of medical image analysis software, which can serve as a medical diagnostic assistant, is increasing. In this study, we are attention to the capsule endoscope image, which has a large data set and takes a long time to judge. The purpose of this paper is to distinguish the gastrointestinal landmarks and to estimate the gastrointestinal transition location that are common to all patients in the judging of capsule endoscopy and take a lot of time. To do this, we designed CNN-based Classifier that can identify gastrointestinal landmarks, and used it to estimate the gastrointestinal transition location by filtering the results. Then, we estimate gastrointestinal transition location about seven of eight patients entered the suspected gastrointestinal transition area. In the case of change from the stomach to the small intestine(pylorus), and change from the small intestine to the large intestine(ileocecal valve), we can check all eight patients were found to be in the suspected gastrointestinal transition area. we can found suspected gastrointestinal transition area in the range of 100 frames, and if the reader plays images at 10 frames per second, the gastrointestinal transition could be found in 10 seconds.

Development of DL-MCS Hybrid Expert System for Automatic Estimation of Apartment Remodeling (공동주택 리모델링 자동견적을 위한 DL-MCS Hybrid Expert System 개발)

  • Kim, Jun;Cha, Heesung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.113-124
    • /
    • 2020
  • Social movements to improve the performance of buildings through remodeling of aging apartment houses are being captured. To this end, the remodeling construction cost analysis, structural analysis, and political institutional review have been conducted to suggest ways to activate the remodeling. However, although the method of analyzing construction cost for remodeling apartment houses is currently being proposed for research purposes, there are limitations in practical application possibilities. Specifically, In order to be used practically, it is applicable to cases that have already been completed or in progress, but cases that will occur in the future are also used for construction cost analysis, so the sustainability of the analysis method is lacking. For the purpose of this, we would like to suggest an automated estimating method. For the sustainability of construction cost estimates, Deep-Learning was introduced in the estimating procedure. Specifically, a method for automatically finding the relationship between design elements, work types, and cost increase factors that can occur in apartment remodeling was presented. In addition, Monte Carlo Simulation was included in the estimation procedure to compensate for the lack of uncertainty, which is the inherent limitation of the Deep Learning-based estimation. In order to present higher accuracy as cases are accumulated, a method of calculating higher accuracy by comparing the estimate result with the existing accumulated data was also suggested. In order to validate the sustainability of the automated estimates proposed in this study, 13 cases of learning procedures and an additional 2 cases of cumulative procedures were performed. As a result, a new construction cost estimating procedure was automatically presented that reflects the characteristics of the two additional projects. In this study, the method of estimate estimate was used using 15 cases, If the cases are accumulated and reflected, the effect of this study is expected to increase.

A Study on the Prediction of Buried Rebar Thickness Using CNN Based on GPR Heatmap Image Data (GPR 히트맵 이미지 데이터 기반 CNN을 이용한 철근 두께 예측에 관한 연구)

  • Park, Sehwan;Kim, Juwon;Kim, Wonkyu;Kim, Hansun;Park, Seunghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.66-71
    • /
    • 2019
  • In this paper, a study was conducted on the method of using GPR data to predict rebar thickness inside a facility. As shown in the cases of poor construction, such as the use of rebars below the domestic standard and the construction of reinforcement, information on rebar thickness can be found to be essential for precision safety diagnosis of structures. For this purpose, the B-scan data of GPR was obtained by gradually increasing the diameter of rebars by making specimen. Because the B-scan data of GPR is less visible, the data was converted into the heatmap image data through migration to increase the intuition of the data. In order to compare the results of application of commonly used B-scan data and heatmap data to CNN, this study extracted areas for rebars from B-scan and heatmap data respectively to build training and validation data, and applied CNN to the deployed data. As a result, better results were obtained for the heatmap data when compared with the B-scan data. This confirms that if GPR heatmap data are used, rebar thickness can be predicted with higher accuracy than when B-scan data is used, and the possibility of predicting rebar thickness inside a facility is verified.

The Study on The Identification Model of Friend or Foe on Helicopter by using Binary Classification with CNN

  • Kim, Tae Wan;Kim, Jong Hwan;Moon, Ho Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.33-42
    • /
    • 2020
  • There has been difficulties in identifying objects by relying on the naked eye in various surveillance systems. There is a growing need for automated surveillance systems to replace soldiers in the field of military surveillance operations. Even though the object detection technology is developing rapidly in the civilian domain, but the research applied to the military is insufficient due to a lack of data and interest. Thus, in this paper, we applied one of deep learning algorithms, Convolutional Neural Network-based binary classification to develop an autonomous identification model of both friend and foe helicopters (AH-64, Mi-17) among the military weapon systems, and evaluated the model performance by considering accuracy, precision, recall and F-measure. As the result, the identification model demonstrates 97.8%, 97.3%, 98.5%, and 97.8 for accuracy, precision, recall and F-measure, respectively. In addition, we analyzed the feature map on convolution layers of the identification model in order to check which area of imagery is highly weighted. In general, rotary shaft of rotating wing, wheels, and air-intake on both of ally and foe helicopters played a major role in the performance of the identification model. This is the first study to attempt to classify images of helicopters among military weapons systems using CNN, and the model proposed in this study shows higher accuracy than the existing classification model for other weapons systems.

Optimized Feature Selection using Feature Subset IG-MLP Evaluation based Machine Learning Model for Disease Prediction (특징집합 IG-MLP 평가 기반의 최적화된 특징선택 방법을 이용한 질환 예측 머신러닝 모델)

  • Kim, Kyeongryun;Kim, Jaekwon;Lee, Jongsik
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • Cardio-cerebrovascular diseases (CCD) account for 24% of the causes of death to Koreans and its proportion is the highest except cancer. Currently, the risk of the cardiovascular disease for domestic patients is based on the Framingham risk score (FRS), but accuracy tends to decrease because it is a foreign guideline. Also, it can't score the risk of cerebrovascular disease. CCD is hard to predict, because it is difficult to analyze the features of early symptoms for prevention. Therefore, proper prediction method for Koreans is needed. The purpose of this paper is validating IG-MLP (Information Gain - Multilayer Perceptron) evaluation based feature selection method using CCD data with simulation. The proposed method uses the raw data of the 4th ~ 7th of The Korea National Health and Nutrition Examination Survey (KNHANES). To select the important feature of CCD, analysis on the attributes using IG-MLP are processed, finally CCD prediction ANN model using optimize feature set is provided. Proposed method can find important features of CCD prediction of Koreans, and ANN model could predict more accurate CCD for Koreans.

Rice Yield Estimation of South Korea from Year 2003-2016 Using Stacked Sparse AutoEncoder (SSAE 알고리즘을 통한 2003-2016년 남한 전역 쌀 생산량 추정)

  • Ma, Jong Won;Lee, Kyungdo;Choi, Ki-Young;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.631-640
    • /
    • 2017
  • The estimation of rice yield affects the income of farmers as well as the fields related to agriculture. Moreover, it has an important effect on the government's policy making including the control of supply demand and the price estimation. Thus, it is necessary to build the crop yield estimation model and from the past, many studies utilizing empirical statistical models or artificial neural network algorithms have been conducted through climatic and satellite data. Presently, scientists have achieved successful results with deep learning algorithms in the field of pattern recognition, computer vision, speech recognition, etc. Among deep learning algorithms, the SSAE (Stacked Sparse AutoEncoder) algorithm has been confirmed to be applicable in the field of forecasting through time series data and in this study, SSAE was utilized to estimate the rice yield in South Korea. The climatic and satellite data were used as the input variables and different types of input data were constructed according to the period of rice growth in South Korea. As a result, the combination of the satellite data from May to September and the climatic data using the 16 day average value showed the best performance with showing average annual %RMSE (percent Root Mean Square Error) and region %RMSE of 7.43% and 7.16% that the applicability of the SSAE algorithm could be proved in the field of rice yield estimation.

Classification of Radar Signals Using Machine Learning Techniques (기계학습 방법을 이용한 레이더 신호 분류)

  • Hong, Seok-Jun;Yi, Yearn-Gui;Choi, Jong-Won;Jo, Jeil;Seo, Bo-Seok
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.162-167
    • /
    • 2018
  • In this paper, we propose a method to classify radar signals according to the jamming technique by applying the machine learning to parameter data extracted from received radar signals. In the present army, the radar signal is classified according to the type of threat based on the library of the radar signal parameters mostly built by the preliminary investigation. However, since radar technology is continuously evolving and diversifying, it can not properly classify signals when applying this method to new threats or threat types that do not exist in existing libraries, thus limiting the choice of appropriate jamming techniques. Therefore, it is necessary to classify the signals so that the optimal jamming technique can be selected using only the parameter data of the radar signal that is different from the method using the existing threat library. In this study, we propose a method based on machine learning to cope with new threat signal form. The method classifies the signal corresponding the new jamming method for the new threat signal by learning the classifier composed of the hidden Markov model and the neural network using the existing library data.

An Analysis on the Efficiency of Bus Information Systems in Bucheon City (부천시 사례를 통한 버스정보시스템 운영효과 분석)

  • 배덕모
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.7-18
    • /
    • 2002
  • To activate public transportation service, Bucheon City built Bus Information System based on Beacon type, and operates it for no.22 line. This research analyzes an effect of BIS operations, and mainly it analyzes far reliability evaluation of bus arrival time information and passenger satisfaction about BIS. As results of reliability evaluation of arrival time information service, it is proven to be practically inappropriate to use as arrival time data because it is not only travel time between each bus stop but also previous travel time history data. In order to improve this matter, neural network model was evaluated as the most outstanding one as result of experiment in applying current arrival time Prediction model. This research cannot help limiting for evaluation of operation effect in Bucheon City because there is no Bus Information System based on GPS type in Korea. For the future ITS model city, in the case of building ITS model city based on GPS type, it is possible to compare two systems relatively. In addition to that, fur the consideration of reliability of bus arrival time information, it is required to develop Predictable model and research factors that affect to bus operation.

A Convergence Study in the Severity-adjusted Mortality Ratio on inpatients with multiple chronic conditions (복합만성질환 입원환자의 중증도 보정 사망비에 대한 융복합 연구)

  • Seo, Young-Suk;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.245-257
    • /
    • 2015
  • This study was to develop the predictive model for severity-adjusted mortality of inpatients with multiple chronic conditions and analyse the factors on the variation of hospital standardized mortality ratio(HSMR) to propose the plan to reduce the variation. We collect the data "Korean National Hospital Discharge In-depth Injury Survey" from 2008 to 2010 and select the final 110,700 objects of study who have chronic diseases for principal diagnosis and who are over the age of 30 with more than 2 chronic diseases including principal diagnosis. We designed a severity-adjusted mortality predictive model with using data-mining methods (logistic regression analysis, decision tree and neural network method). In this study, we used the predictive model for severity-adjusted mortality ratio by the decision tree using Elixhauser comorbidity index. As the result of the hospital standardized mortality ratio(HSMR) of inpatients with multiple chronic conditions, there were statistically significant differences in HSMR by the insurance type, bed number of hospital, and the location of hospital. We should find the method based on the result of this study to manage mortality ratio of inpatients with multiple chronic conditions efficiently as the national level. So we should make an effort to increase the quality of medical treatment for inpatients with multiple chronic diseases and to reduce growing medical expenses.