• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.039 seconds

Design of RBF-based Polynomial Neural Network And Optimization (방사형 기저 함수 기반 다항식 뉴럴네트워크 설계 및 최적화)

  • Kim, Ki-Sang;Jin, Yong-Ha;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1863_1864
    • /
    • 2009
  • 본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 입력개수, 입력변수, 클러스터의 개수를 PSO알고리즘(Particle Swarm Optimization)을 사용하여 최적화 시켰다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.

  • PDF

A Robust Control with a Neural Network Structure for Uncertain Robot Manipulator

  • Han, Myoung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1916-1922
    • /
    • 2004
  • A robust position control with the bound function of neural network structure is proposed for uncertain robot manipulators. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, and etc. Therefore, uncertainties are often nonlinear and time-varying. The neural network structure presents the bound function and does not need the concave property of the bound function. The robust approach is to solve this problem as uncertainties are included in a model and the controller can achieve the desired properties in spite of the imperfect modeling. Simulation is performed to validate this law for four-axis SCARA type robot manipulator.

Specific Cutting Force Coefficients Modeling of End Milling by Neural Network

  • Lee, Sin-Young;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.622-632
    • /
    • 2000
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on. The cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling processes for various cutting conditions, their mathematical model is important and the model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging forces of cutting tests. In this paper the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in the learning stage as the omitted number of experimental data increase the average errors increase as well.

  • PDF

Improvement of Thickness Accuracy in Hot-rolling Mill Using Neural Network and Genetic Algorithm (신경회로망과 유전자 알고리즘을 이용한 열연두께 정도 향상)

  • Son, Joon-Sik;Kim, Ill-Soo;Lee, Duk-Man;Kueon, Yeong-Seob
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.59-64
    • /
    • 2006
  • The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved in order to achieve the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties). The mathematical modeling of hot rolling process has long been recognized to be a desirable approach to investigate rolling operating practice and design of mill requirement. To achieve this objectives, a new teaming method with neural network to improve the accuracy of rolling force prediction in hot rolling mill is developed. Also, Genetic Algorithm(GA) is applied to select the optimal structure of the neural network and compared with that of engineers experience. It is shown from this research that both structure selection methods can lead to similar results.

Indirect Cutting Force Estimation Using Artificial Neural Network (인공 신경망을 이용한 절삭력 간접 측정)

  • 최지현;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1054-1058
    • /
    • 1995
  • There have been many research works for the indirect cutting force measurement in machining process, which deal with the case of one-axis cutting process. In multi-axis cutting process, the main difficulties to estimate the cutting forces occur when the feed direction is reversed. This paper presents the indirect cutting force measurement method in contour NC milling processes by using current signals of servo motors. An artificial neural network (ANN) system are suggested. An artificial neural network(ANN) system is also implemented with a training set of experimental cutting data to measure cutting force indirectly. The input variables of the ANN system are the motor currents and the feedrates of x and y-axis servo motors, and output variable is the cutting force of each axis. A series of experimental works on the circular interpolated contour milling process with the path of a complete circle has been performed. It is concluded that by comparing the ANN system with a dynamometer measuring cutting force directil, the ANN system has a good performance.

  • PDF

Motion Control of Pneumatic Servo Cylinder Using Neural Network (신경회로망을 이용한 공압 서보실린더의 운동제어)

  • Cho, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.140-147
    • /
    • 2008
  • This paper describes a Neural Network based PD control scheme for motion control of pneumatic servo cylinder. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional linear controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. Based on the parameters thus identified, a PD feedback compensator is designed first and then a neural network is incorporated. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PD control.

Active Control of Structures Using Lattice Probabilistic Neural Network (격자 확률신경망 기법을 이용한 구조물의 능동 제어)

  • Kim, Dong-Hyawn;Chang, Seong-Kyu;Kwon, Soon-Duck;Kim, Doo-Kie
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.662-667
    • /
    • 2007
  • A new neuro-control scheme for active control of structures is proposed. It utilizes lattice pattern of state vector as training data of probabilistic neural network(PNN). Therefore. it is the so-called lattice probabilistic neural network(LPNN). PNN makes control forces by using all the training patterns. Therefore, it takes much time to obtain a control force in application. This inevitably may delay the control action. However. control force of LPNN is calculated by using only the adjacent information of LPNN input. So, the response of LPNN is greatly faster than PNN. The proposed control algorithm is applied for three story building under California and El Centro earthquakes. Also, control results of the LPNN are compared with those of the conventional PNN. The structural responses have been suppressed effectively by the proposed algorithm.

Development of Apple Color Sorting Algorithm using Neural Network (신경회로망을 이용한 사과의 색택선별 알고리즘 개발에 관한 연구)

  • 이수희;노상하;이종환
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.376-382
    • /
    • 1995
  • This study was intended to develop more reliable fruit sorting algorithm regardless of the feeding positions of fruits by using the neural network in which various information could be included as input data. Specific objectives of this study were to select proper input units in the neural network by investigating the features of input image, to analyze the sorting accuracy of the algorithm depending on the feeding positions of Fuji apple and to evaluate the performance of the algorithm for practical usage. the average value in color grading accuracy was 90%. Based on the computing time required for color grading, the maximum sorting capacity was estimated to approximately 10, 800 apples per hours. Finally, it is concluded that the neuro-net based color sorting algorithm developed in this study has feasibility for practical usage.

  • PDF

A Study on Application of the Multi-layor Perceptron to the Human Sensibility Classifier with Eletroencephalogram (뇌파의 감성 분류기로서 다층 퍼셉트론의 활용에 관한 연구)

  • Kim, Dong Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1506-1511
    • /
    • 2018
  • This study presents a human sensibility evaluation method using neural network and multiple-template method on electroencephalogram(EEG). We used a multi-layer perceptron type neural network as the sensibility classifier using EEG signal. For our research objective, 10-channel EEG signals are collected from the healthy subjects. After the necessary preprocessing is performed on the acquired signals, the various EEG parameters are estimated and their discriminating performance is evaluated in terms of pattern classification capability. In our study, Linear Prediction(LP) coefficients are utilized as the feature parameters extracting the characteristics of EEG signal, and a multi-layer neural network is used for indicating the degree of human sensibility. Also, the estimation for human comfortableness is performed by varying temperature and humidity environment factors and our results showed that the proposed scheme achieved good performances for evaluation of human sensibility.

Application of wavelet multiresolution analysis and artificial intelligence for generation of artificial earthquake accelerograms

  • Amiri, G. Ghodrati;Bagheri, A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.153-166
    • /
    • 2008
  • This paper suggests the use of wavelet multiresolution analysis (WMRA) and neural network for generation of artificial earthquake accelerograms from target spectrum. This procedure uses the learning capabilities of radial basis function (RBF) neural network to expand the knowledge of the inverse mapping from response spectrum to earthquake accelerogram. In the first step, WMRA is used to decompose earthquake accelerograms to several levels that each level covers a special range of frequencies, and then for every level a RBF neural network is trained to learn to relate the response spectrum to wavelet coefficients. Finally the generated accelerogram using inverse discrete wavelet transform is obtained. An example is presented to demonstrate the effectiveness of the method.