• 제목/요약/키워드: neural network.

Search Result 11,766, Processing Time 0.037 seconds

Electric Power Demand Prediction Using Deep Learning Model with Temperature Data (기온 데이터를 반영한 전력수요 예측 딥러닝 모델)

  • Yoon, Hyoup-Sang;Jeong, Seok-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.307-314
    • /
    • 2022
  • Recently, researches using deep learning-based models are being actively conducted to replace statistical-based time series forecast techniques to predict electric power demand. The result of analyzing the researches shows that the performance of the LSTM-based prediction model is acceptable, but it is not sufficient for long-term regional-wide power demand prediction. In this paper, we propose a WaveNet deep learning model to predict electric power demand 24-hour-ahead with temperature data in order to achieve the prediction accuracy better than MAPE value of 2% which statistical-based time series forecast techniques can present. First of all, we illustrate a delated causal one-dimensional convolutional neural network architecture of WaveNet and the preprocessing mechanism of the input data of electric power demand and temperature. Second, we present the training process and walk forward validation with the modified WaveNet. The performance comparison results show that the prediction model with temperature data achieves MAPE value of 1.33%, which is better than MAPE Value (2.33%) of the same model without temperature data.

Building Bearing Fault Detection Dataset For Smart Manufacturing (스마트 제조를 위한 베어링 결함 예지 정비 데이터셋 구축)

  • Kim, Yun-Su;Bae, Seo-Han;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.488-493
    • /
    • 2022
  • In manufacturing sites, bearing fault in eletrically driven motors cause the entire system to shut down. Stopping the operation of this environment causes huge losses in time and money. The reason of this bearing defects can be various factors such as wear due to continuous contact of rotating elements, excessive load addition, and operating environment. In this paper, a motor driving environment is created which is similar to the domestic manufacturing sites. In addition, based on the established environment, we propose a dataset for bearing fault detection by collecting changes in vibration characteristics that vary depending on normal and defective conditions. The sensor used to collect the vibration characteristics is Microphone G.R.A.S. 40PH-10. We used various machine learning models to build a prototype bearing fault detection system trained on the proposed dataset. As the result, based on the deep neural network model, it shows high accuracy performance of 92.3% in the time domain and 98.3% in the frequency domain.

Emotional Expression Technique using Facial Recognition in User Review (사용자 리뷰에서 표정 인식을 이용한 감정 표현 기법)

  • Choi, Wongwan;Hwang, Mansoo;Kim, Neunghoe
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.23-28
    • /
    • 2022
  • Today, the online market has grown rapidly due to the development of digital platforms and the pandemic situation. Therefore, unlike the existing offline market, the distinctiveness of the online market has prompted users to check online reviews. It has been established that reviews play a significant part in influencing the user's purchase intention through precedents of several studies. However, the current review writing method makes it difficult for other users to understand the writer's emotions by expressing them through elements like tone and words. If the writer also wanted to emphasize something, it was very cumbersome to thicken the parts or change the colors to reflect their emotions. Therefore, in this paper, we propose a technique to check the user's emotions through facial expression recognition using a camera, to automatically set colors for each emotion using research on existing emotions and colors, and give colors based on the user's intention.

An Analysis of the Key Factors Affecting Apartment Sales Price in Gwangju, South Korea (광주광역시 아파트 매매가 영향요인 분석)

  • Lim, Sung Yeon;Ko, Chang Wan;Jeong, Young-Seon
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.62-73
    • /
    • 2022
  • Researches on the prediction of domestic apartment sales price have been continuously conducted, but it is not easy to accurately predict apartment prices because various characteristics are compounded. Prior to predicting apartment sales price, the analysis of major factors, influencing on sale prices, is of paramount importance to improve the accuracy of sales price. Therefore, this study aims to analyze what are the factors that affect the apartment sales price in Gwangju, which is currently showing a steady increase rate. With 6 years of Gwangju apartment transaction price and various social factor data, several maching learning techniques such as multiple regression analysis, random forest, and deep artificial neural network algorithms are applied to identify major factors in each model. The performances of each model are compared with RMSE (Root Mean Squared Error), MAE (Mean Absolute Error) and R2 (coefficient of determination). The experiment shows that several factors such as 'contract year', 'applicable area', 'certificate of deposit', 'mortgage rate', 'leading index', 'producer price index', 'coincident composite index' are analyzed as main factors, affecting the sales price.

Deep Learning-based Real-time Heart Rate Measurement System Using Mobile Facial Videos (딥러닝 기반의 모바일 얼굴 영상을 이용한 실시간 심박수 측정 시스템)

  • Ji, Yerim;Lim, Seoyeon;Park, Soyeon;Kim, Sangha;Dong, Suh-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1481-1491
    • /
    • 2021
  • Since most biosignals rely on contact-based measurement, there is still a problem in that it is hard to provide convenience to users by applying them to daily life. In this paper, we present a mobile application for estimating heart rate based on a deep learning model. The proposed application measures heart rate by capturing real-time face images in a non-contact manner. We trained a three-dimensional convolutional neural network to predict photoplethysmography (PPG) from face images. The face images used for training were taken in various movements and situations. To evaluate the performance of the proposed system, we used a pulse oximeter to measure a ground truth PPG. As a result, the deviation of the calculated root means square error between the heart rate from remote PPG measured by the proposed system and the heart rate from the ground truth was about 1.14, showing no significant difference. Our findings suggest that heart rate measurement by mobile applications is accurate enough to help manage health during daily life.

Highlighting Defect Pixels for Tire Band Texture Defect Classification (타이어 밴드 직물의 불량유형 분류를 위한 불량 픽셀 하이라이팅)

  • Rakhmatov, Shohruh;Ko, Jaepil
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.113-118
    • /
    • 2022
  • Motivated by people highlighting important phrases while reading or taking notes we propose a neural network training method by highlighting defective pixel areas to classify effectively defect types of images with complex background textures. To verify our proposed method we apply it to the problem of classifying the defect types of tire band fabric images that are too difficult to classify. In addition we propose a backlight highlighting technique which is tailored to the tire band fabric images. Backlight highlighting images can be generated by using both the GradCAM and simple image processing. In our experiment we demonstrated that the proposed highlighting method outperforms the traditional method in the view points of both classification accuracy and training speed. It achieved up to 13.4% accuracy improvement compared to the conventional method. We also showed that the backlight highlighting technique tailored for highlighting tire band fabric images is superior to a contour highlighting technique in terms of accuracy.

Machine Learning-based Process Condition Selection Method to Prevent Defects in Korean Traditional Brass Casting (한국 전통 유기 제작에서 결함을 방지하기 위한 기계 학습 기반의 공정 조건 선택 방안)

  • Lee, Seungcheol;Han, Dosuck;Yi, Hyuck;Kim, Naksoo
    • Journal of Korea Foundry Society
    • /
    • v.42 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • In the present study, in order to prevent the misrun defects that occur during traditional brass casting, a method for selecting the proper casting process conditions is proposed. A learning model was developed and demonstrated to be able to learn the presence or absence of defects according to the casting process conditions and to predict the occurrence of defects depending on the certain process given. Appropriate process conditions were determined by applying the proposed method, and the determined conditions were verified through a comparison of different simulation results with additional conditions. With this method, it is possible to determine the casting process conditions that will prevent defects in the desired sand model. This technology is expected to contribute to realization of smart traditional brass farming workshops.

A Study on the Image Preprosessing model linkage method for usability of Pix2Pix (Pix2Pix의 활용성을 위한 학습이미지 전처리 모델연계방안 연구)

  • Kim, Hyo-Kwan;Hwang, Won-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.380-386
    • /
    • 2022
  • This paper proposes a method for structuring the preprocessing process of a training image when color is applied using Pix2Pix, one of the adversarial generative neural network techniques. This paper concentrate on the prediction result can be damaged according to the degree of light reflection of the training image. Therefore, image preprocesisng and parameters for model optimization were configured before model application. In order to increase the image resolution of training and prediction results, it is necessary to modify the of the model so this part is designed to be tuned with parameters. In addition, in this paper, the logic that processes only the part where the prediction result is damaged by light reflection is configured together, and the pre-processing logic that does not distort the prediction result is also configured.Therefore, in order to improve the usability, the accuracy was improved through experiments on the part that applies the light reflection tuning filter to the training image of the Pix2Pix model and the parameter configuration.

A General Acoustic Drone Detection Using Noise Reduction Preprocessing (환경 소음 제거를 통한 범용적인 드론 음향 탐지 구현)

  • Kang, Hae Young;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.881-890
    • /
    • 2022
  • As individual and group users actively use drones, the risks (Intrusion, Information leakage, and Sircraft crashes and so on) in no-fly zones are also increasing. Therefore, it is necessary to build a system that can detect drones intruding into the no-fly zone. General acoustic drone detection researches do not derive location-independent performance by directly learning drone sound including environmental noise in a deep learning model to overcome environmental noise. In this paper, we propose a drone detection system that collects sounds including environmental noise, and detects drones by removing noise from target sound. After removing environmental noise from the collected sound, the proposed system predicts the drone sound using Mel spectrogram and CNN deep learning. As a result, It is confirmed that the drone detection performance, which was weak due to unstudied environmental noises, can be improved by more than 7%.

Deep Learning-based Pes Planus Classification Model Using Transfer Learning

  • Kim, Yeonho;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.21-28
    • /
    • 2021
  • This study proposes a deep learning-based flat foot classification methodology using transfer learning. We used a transfer learning with VGG16 pre-trained model and a data augmentation technique to generate a model with high predictive accuracy from a total of 176 image data consisting of 88 flat feet and 88 normal feet. To evaluate the performance of the proposed model, we performed an experiment comparing the prediction accuracy of the basic CNN-based model and the prediction model derived through the proposed methodology. In the case of the basic CNN model, the training accuracy was 77.27%, the validation accuracy was 61.36%, and the test accuracy was 59.09%. Meanwhile, in the case of our proposed model, the training accuracy was 94.32%, the validation accuracy was 86.36%, and the test accuracy was 84.09%, indicating that the accuracy of our model was significantly higher than that of the basic CNN model.