• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.032 seconds

Performance Evaluation of Chip Breaker Utilizing Neural Network (신경망기법에 의한 칩브레이커의 성능평가)

  • Kim, Hong-Gyoo;Sim, Jae-Hyung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.64-74
    • /
    • 2007
  • The continuous chip in turning operation deteriorates precision of workpiece and causes a hazardous condition to operator. Thus the chip form control becomes a very important task for reliable machining process. So, grooved chip breaker is widely used to obtain reliable discontinuous chip. However, developing new cutting insert having chip breaker takes long time and needs lots of research expense due to a couple of processes such as forming, sintering, grinding and coating of product and many different evaluation tests. In this paper, performance of commercial chip breaker is evaluated with neural network which is learned with a back propagation algorithm. For the evaluation, several important elements(depth of cut, land, breadth, radius) which directly influence the chip formation were chosen among commercial chip breakers and were used as input values of neural network. With the results of these input values, the performance evaluation method was developed and applied that method to the commercial tools.

The Welding Process Control Using Neural Network Algorithm (Neural Network 알고리즘을 이용한 용접공정제어)

  • Cho Man Ho;Yang Sang Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.84-91
    • /
    • 2004
  • A CCD camera with a laser stripe was applied to realize the automatic weld seam tracking in GMAW. It takes relatively long time to process image on-line control using the basic Hough transformation, but it has a tendency of robustness over the noises such as spatter and arc tight. For this reason, it was complemented with adaptive Hough transformation to have an on-line processing ability for scanning specific weld points. The adaptive Hough transformation was used to extract laser stripes and to obtain specific weld points. The 3-dimensional information obtained from the vision system made it possible to generate the weld torch path and to obtain the information such as width and depth of weld line. In this study, a neural network based on the generalized delta rule algorithm was adapted for the process control of GMA, such as welding speed, arc voltage and wire feeding speed.

Development of Algorithms for Sorting Peeled Garlic Using Machnie Vison (I) - Comparison of sorting accuracy between Bayes discriminant function and neural network - (기계시각을 이용한 박피 마늘 선별 알고리즘 개발 (I) - 베이즈 판별함수와 신경회로망에 의한 설별 정확도 비교 -)

  • 이상엽;이수희;노상하;배영환
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.325-334
    • /
    • 1999
  • The aim of this study was to present a groundwork for development of a sorting system of peeled garlics using machine vision. Images of various garlic samples such as sound, partially defective, discolored, rotten and un-peeled were obtained with a B/W machine vision system. Sorting factors which were based on normalized histogram and statistical analysis(STEPDISC Method) had good separability for various garlic samples. Bayes discriminant function and neural network sorting algorithms were developed with the sample images and were experimented on various garlic samples. It was showed that garlic samples could be classified by sorting algorithm with average sorting accuracies of 88.4% by Bayes discriminant function and 93.2% by neural network.

  • PDF

Voltage Quality Improvement with Neural Network-Based Interline Dynamic Voltage Restorer

  • Aali, Seyedreza;Nazarpour, Daryoush
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.769-775
    • /
    • 2011
  • Custom power devices such as dynamic voltage restorer (DVR) and DSTATCOM are used to improve the power quality in distribution systems. These devices require real power to compensate the deep voltage sag during sufficient time. An interline DVR (IDVR) consists of several DVRs in different feeders. In this paper, a neural network is proposed to control the IDVR performance to achieve optimal mitigation of voltage sags, swell, and unbalance, as well as improvement of dynamic performance. Three multilayer perceptron neural networks are used to identify and regulate the dynamics of the voltage on sensitive load. A backpropagation algorithm trains this type of network. The proposed controller provides optimal mitigation of voltage dynamic. Simulation is carried out by MATLAB/Simulink, demonstrating that the proposed controller has fast response with lower total harmonic distortion.

Image Label Prediction Algorithm based on Convolution Neural Network with Collaborative Layer (협업 계층을 적용한 합성곱 신경망 기반의 이미지 라벨 예측 알고리즘)

  • Lee, Hyun-ho;Lee, Won-jin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.756-764
    • /
    • 2020
  • A typical algorithm used for image analysis is the Convolutional Neural Network(CNN). R-CNN, Fast R-CNN, Faster R-CNN, etc. have been studied to improve the performance of the CNN, but they essentially require large amounts of data and high algorithmic complexity., making them inappropriate for small and medium-sized services. Therefore, in this paper, the image label prediction algorithm based on CNN with collaborative layer with low complexity, high accuracy, and small amount of data was proposed. The proposed algorithm was designed to replace the part of the neural network that is performed to predict the final label in the existing deep learning algorithm by implementing collaborative filtering as a layer. It is expected that the proposed algorithm can contribute greatly to small and medium-sized content services that is unsuitable to apply the existing deep learning algorithm with high complexity and high server cost.

An Analysis on an Action about Port Choice of Shipper using Fuzzy-Neural Network (퍼지-뉴로를 이용한 화주의 항만선택 행동 분석)

  • Jang, Woon-Jae;Keum, Jong-Soo
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.725-731
    • /
    • 2007
  • This paper aims to analyze an action about a port choice of shipper between two ports. For this propose, this paper analyzed a port choice action for Kwangyang and Busan port using a fuzzy logic and neural network. Also, this paper compared classification performance of fuzzy-neural network to Logit model, and analyzed a port choice action into change Para-meta such as freight volumes and service standard.

Speed Estimation and Control of IPMSM using HAI Control (HAI 제어를 이용한 IPMSM의 속도 추정 및 제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.176-178
    • /
    • 2004
  • Precise control of interior permanent magnet synchronous motor(IPMSM) over wide speed range is an engineering challenge. This paper considers the design and implementation of novel technique of speed estimation and control for IPMSM using hybrid intelligent control. The hybrid combination of neural network and adaptive fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of IPMSM using adaptive neural network fuzzy(A-NNF) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed.

  • PDF

Torque Ripples Minimization of DTC IPMSM Drive for the EV Propulsion System using a Neural Network

  • Singh, Bhim;Jain, Pradeep;Mittal, A.P.;Gupta, J.R.P.
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.23-34
    • /
    • 2008
  • This paper deals with a Direct Torque Control (DTC) of an Interior Permanent Magnet Synchronous Motor (IPMSM) for the Electric Vehicle (EV) propulsion system using a Neural Network (NN). The Conventional DTC with optimized switching lookup table and three level torque controller generates relatively large torque ripples in an electric vehicle motor drive. For reducing the torque ripples, a three level torque controller is hereby replaced by the five level torque controller. Furthermore, the switching lookup table of the five level torque controller based DTC is replaced with a Neural Network. These DTC schemes of an IPMSM drive are simulated using MATLAB/SIMULINK. The simulated results are compared with the conventional DTC and it is found that the ripples in the torque, as well as in the stator current, are reduced drastically.

A Research on the Adaptive Control by the Modification of Control Structure and Neural Network Compensation (제어구조 변경과 신경망 보정에 의한 적응제어에 관한 연구)

  • Kim, Yun-Sang;Lee, Jong-Soo;Choi, Kyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.812-814
    • /
    • 1999
  • In this paper, we propose a new control algorithm based on the neural network(NN) feedback compensation with a desired trajectory modification. The proposed algorithm decreases trajectory errors by a feed-forward desired torque combined with a neural network feedback torque component. And, to robustly control the tracking error, we modified the desired trajectory by variable structure concept smoothed by a fuzzy logic. For the numerical simulation, a 2-link robot manipulator model was assumed. To simulate the disturbance due to the modelling uncertainty. As a result of this simulation, the proposed method shows better trajectory tracking performance compared with the CTM and decreases the chattering in control inputs.

  • PDF

Recognition of Patterns and Marks on the Glass Panel of Computer Monitor (컴퓨터 모니터용 유리 패널의 문자 마크 인식)

  • Ahn, In-Mo;Lee, Kee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • In this paper, a machine vision system for recognizing and classifying the patterns and marks engraved by die molding or laser marking on the glass panels of computer monitors is suggested and evaluated experimentally. The vision system is equipped with a neural network and an NGC pattern classifier including searching process based on normalized grayscale correlation and adaptive binarization. This system is found to be applicable even to the cases in which the segmentation of the pattern area from the background using ordinary blob coloring technique is quite difficult. The inspection process is accomplished by the use of the NGC hypothesis and ANN verification. The proposed pattern recognition system is composed of three parts: NGC matching process and the preprocessing unit for acquiring the best quality of binary image data, a neural network-based recognition algorithm, and the learning algorithm for the neural network. Another contribution of this paper is the method of generating the training patterns from only a few typical product samples in place of real images of all types of good products.