• Title/Summary/Keyword: neural network.

검색결과 11,766건 처리시간 0.044초

River Flow Forecasting using Satellite-based Products and Machine Learning Technique over the Ungauged River Flow in Korean Peninsula, Imjin River: Using MODIS, ASCAT, and SDS dataset (위성 데이터 및 기계 학습 기법을 활용한 한반도 임진강 미계측 지역 유출량 예측: MODIS, ASCAT, SDS 데이터를 활용하여)

  • Choi, Min Ha;Kim, Hyung Lok;Li, Li;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.159-159
    • /
    • 2016
  • 북한 지역에서 시작되어 한반도의 금문댐까지 연결되는 임진강은 북한지역의 유출량 미계측으로 인해 유출량 산출에 많은 어려움이 있어왔다. 본 연구에서는 위성 데이터를 활용하여 미계측 유역의 유출량을 추정 할 수 있는 기법을 제시하였다. Satellite-derived Flow Signal (SDF)는 위성 기반 특정 지역의 유출 정보를 제공하며, JAXA의 GCOM-W1 위성에 탑재된 Advanced Microwave Scanning Radiometer 2(AMSR2) 센서에서 산출된다. 본 연구에서는 SDS 뿐 아니라 유출에 크게 관련이 있는 지표 토양수분 데이터와 식생인자를 임진강 유출 값을 예측하기 위한 입력 값으로 활용하였다. 토양수분 데이터는 Metop-A 위성에 탑재된 Advanced Scatterometer(ASCAT) 센서에서 산출되는 데이터를 활용하였으며, 식생데이터는 Aqua 위성에 탑재된 Moderate Resolution Imaging Spectroradiometer(MODIS) 센서에서 측정되는 Normalized Difference Vegetation Index(NDVI) 데이터를 활용하였다. 추가적으로 SDS, 토양수분, NDVI 데이터는 다양한 lag time으로 약 150여개의 입력데이터로 세분화되었다. 150개의 방대한 입력인자는 Partial Mutual Information(PMI) 방법을 통해 소수 중요 인자들로 간추려져 기계 학습 입력인자로 활용되었다. 기계학습에 있어서는 Support Vector Machine(SVM), Artificial Neural Network (ANN) 기법을 활용하였다. SVM, ANN을 통해 모델화된 유출데이터는 금문댐 유출데이터와 비교/분석되었다. SVM 기법 기반의 유출량은 실제 유출량과 0.73의 상관계수를 보여주었고, ANN 기법 기반의 유출량은 0.66의 상관계수를 결과를 나타내었다. 하지만 SVM 기반 유출데이터는 과소 산정 되는 경향을 보였으며, ANN 기법 기반의 유출량은 과대산정되는 결과가 산출되는 한계점이 있음을 파악할 수 있었다.

  • PDF

Calculation of Non-revenue Water Ratio through the Artificial Neural Network of Water Distribution System (인공신경망을 이용한 상수관망 내 무수율 산정)

  • Jang, Dong Woo;Choi, Gye Woon;Park, Hyo Seon;Jo, Hyoung Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.120-120
    • /
    • 2017
  • 인천지역의 상수도공급은 팔당댐을 취수원으로 하여 도수, 송수관을 거쳐 인천지역 내 정수장을 통하여 각 급수지역까지 일원화된 관로시스템으로 공급되고 있다. 관망에서의 적절한 수압관리, 노후관로 교체사업 등은 급수관망 내 관로 사고위험을 줄일 수 있고, 누수량을 저감하여 무수율의 감소로 이어질 수 있다. 상수관망 내 누수에 영향을 주는 물리적, 운영적 요소를 파악하고, 이를 이용하여 누수해결을 위한 방법론을 제시하는 것은 매우 중요하다. 본 연구에서는 인천시 배수관망 데이터를 활용하여 통계분석 및 인공신경망을 통하여 무수율에 영향을 미치는 인자를 선별하고, 무수율과의 연관성을 분석하고자 하였다. 이를 위해 대상지역에 대한 시설현황 및 운영자료를 취득하고, 무수율 분석에 활용하였다. 인천시의 소블럭을 대상으로 관로노후도, 배수관연장, 평균관경, 급수전당 공급량, 누수발생 횟수, 용도지역, 관망구성 형태 등을 고려하여 무수율과의 관계분석을 위한 통계분석을 수행하였다. 특히 급수에 필요한 최소에너지와 관망에서 공급되는 에너지를 비교하기 위하여 관망해석 프로그램인 EPANET을 이용하여 관망내 절점에서의 수압과 수요량이 적용된 최소공급에너지를 활용하였고, 이를 통하여 블록 내 과잉공급에너지와 무수율의 영향성을 비교하였다. 최종적으로 산출된 주요인자에 대한 주성분분석, 분산분석, 다중회귀분석 등의 통계분석과 인공신경망에 의해 학습된 알고리즘을 통하여 산정된 무수율을 실측 무수율과 비교, 분석하였다. 인공신경망에 의해 산정된 무수율과 실측 무수율의 정확도를 평가하기 위하여 MAE, MSE, PBIAS 등의 정확도 평가와 산점도 분석을 수행하고, 상관계수를 도출하여 가장 정확한 방법을 결정하였다. 분석 결과 통계분석에 의한 다중회귀식으로 산출된 무수율 보다 인공신경망에 의한 무수율이 실측값에 더욱 근접한 것으로 나타났으며 이용된 뉴런의 수의 따라 산출결과가 상이하기 때문에 최적 뉴런의 수를 산정해야 할 필요가 있음을 확인하였다. 특히 사용된 상수관망 주요인자 중 주성분분석을 통하여 선정된 각 성분을 인공신경망에 적용시 더욱 정확한 무수율 예측이 가능한 것으로 나타났다.

  • PDF

Development of Demand Forecasting Algorithm in Smart Factory using Hybrid-Time Series Models (Hybrid 시계열 모델을 활용한 스마트 공장 내 수요예측 알고리즘 개발)

  • Kim, Myungsoo;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제19권5호
    • /
    • pp.187-194
    • /
    • 2019
  • Traditional demand forecasting methods are difficult to meet the needs of companies due to rapid changes in the market and the diversification of individual consumer needs. In a diversified production environment, the right demand forecast is an important factor for smooth yield management. Many of the existing predictive models commonly used in industry today are limited in function by little. The proposed model is designed to overcome these limitations, taking into account the part where each model performs better individually. In this paper, variables are extracted through Gray Relational analysis suitable for dynamic process analysis, and statistically predicted data is generated that includes characteristics of historical demand data produced through ARIMA forecasts. In combination with the LSTM model, demand forecasts can then be calculated by reflecting the many factors that affect demand forecast through an architecture that is structured to avoid the long-term dependency problems that the neural network model has.

Analysis for Flood Quantile Estimates at Ungauged Sites in Arid and Semi-arid Regions Based on Regional Frequency Analysis (지역빈도해석을 통한 건조지역의 미계측 지점 확률홍수량 추정을 위한 연구)

  • Jung, Kichul;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.51-51
    • /
    • 2017
  • 지역빈도해석은 짧은 기간의 자료를 보유하고 있는 계측 지점이나 자료가 없는 미계측 지점에서의 확률수문량을 산정하기 위하여 많이 쓰여 진다. 지역빈도해석을 실시하기 위한 조건으로는 우선 수집된 하천유역들을 대상으로 수문학적 동질 지역을 구분하는 것이 중요하다. 그리고 구분되어진 지역에 포함되는 모든 지점들의 자료를 빈도해석 함으로써 관심 지점의 신뢰할 만한 확률수문량을 산정하는 것이다. 그동안의 지역빈도해석은 주로 비건조지역을 중심으로 홍수와 같은 재난재해 대비 그리고 수자원 관리를 위한 연구들을 실시해왔다. 본 연구의 주 목적은 건조지역의 수자원 관리를 위해 건조지역 하천유역을 중심으로 지역빈도해석을 실시하여 신뢰할만한 확률수문량을 산정하는 것이다. 확률수문량 산정값의 정확도를 향상시키기 위해 지역빈도해석 모델에 쓰여 지는 새로운 지형학적 변수들을 제공하였고 수문학적 동질 지역을 구분 위해 수집된 각 하천유역의 형상들을 확인하여 동질 지역을 정의하였다. 예를 들면, 수지형 유역, 부채형 유역, 격자형 유역과 같은 다른 형상들을 구분하여 각 유역 형상 종류별로 동질 지역을 만들었다. 건조지역의 지역빈도해석을 위해 미국 건조지역의 105개 하천유역 유량자료들을 수집 및 이용하였다. 확률수문량 산정을 위하여 앙상블 인경신경망 (Ensemble Artificial Neural Network)과 정준 상관 계수(Canonical Correlation Analysis)를 이용한 지역빈도해석 모델을 만들었다. 제안된 모델의 수행평가와 정확성 평가를 위해 리샘플링 기법인 10-겹 교차 검증 (10-fold cross-validation), 잭나이프 (Jackknife) 기법들을 이용하였고 모델로부터 산정된 확률수문량값을 편향 (Bias), 상대 편향(rBias), 평균 제곱근 오차 (RMSE), 상대 평균 제곱근 오차 (rRMSE)를 통하여 산정 값과 실제 관측 값의 차이를 분석하였다. 그 결과 건조지역의 지역빈도해석을 위해 새롭게 제시된 지형학적 변수들을 사용하였을 때 모델의 수행능력이 향상되었음을 확인하였다. 또한 하천유역 형상에 따라 동질 지역을 구분하였을 때 향상된 확률수문량이 산정되었다. 향상된 지역빈도해석 모델을 통해 건조지역의 신뢰할만한 확률수문량을 산정함으로써 건조지역의 효과적인 수자원 관리를 위한 수공시설물 설계에 중요한 정보들을 제공할 것이다.

  • PDF

Camera Model Identification Based on Deep Learning (딥러닝 기반 카메라 모델 판별)

  • Lee, Soo Hyeon;Kim, Dong Hyun;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제8권10호
    • /
    • pp.411-420
    • /
    • 2019
  • Camera model identification has been a subject of steady study in the field of digital forensics. Among the increasingly sophisticated crimes, crimes such as illegal filming are taking up a high number of crimes because they are hard to detect as cameras become smaller. Therefore, technology that can specify which camera a particular image was taken on could be used as evidence to prove a criminal's suspicion when a criminal denies his or her criminal behavior. This paper proposes a deep learning model to identify the camera model used to acquire the image. The proposed model consists of four convolution layers and two fully connection layers, and a high pass filter is used as a filter for data pre-processing. To verify the performance of the proposed model, Dresden Image Database was used and the dataset was generated by applying the sequential partition method. To show the performance of the proposed model, it is compared with existing studies using 3 layers model or model with GLCM. The proposed model achieves 98% accuracy which is similar to that of the latest technology.

Stochastic Real-time Demand Prediction for Building and Charging and Discharging Technique of ESS Based on Machine-Learning (머신러닝기반 확률론적 실시간 건물에너지 수요예측 및 BESS충방전 기법)

  • Yang, Seung Kwon;Song, Taek Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.157-163
    • /
    • 2019
  • K-BEMS System was introduced to reduce peak load and to save total energy of the 120 buildings that KEPCO headquarter and branch offices use. K-BEMS system is composed of PV, battery, and hybrid PCS. In this system, ESS, PV, lighting is used to save building energy based on demand prediction. Currently, neural network technique for short past data is applied to demand prediction, and fixed scheduling method by operator for ESS charging/discharging is used. To enhance this system, KEPCO research institute has carried out this K-BEMS research project for 3 years since January 2016. As the result of this project, we developed new real-time highly reliable building demand prediction technique with error free and optimized automatic ESS charging/discharging technique. Through several field test, we can certify the developed algorithm performance successfully. So we will describe the details in this paper.

Development of water elevation prediction algorithm using unstructured data : Application to Cheongdam Bridge, Korea (비정형화 데이터를 활용한 수위예측 알고리즘 개발 : 청담대교 적용)

  • Lee, Seung Yeon;Yoo, Hyung Ju;Lee, Seung Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.121-121
    • /
    • 2019
  • 특정 지역에 집중적으로 비가 내리는 현상인 국지성호우가 빈번히 발생함에 따라 하천 주변 사회기반시설의 침수 위험성이 증가하고 있다. 침수 위험성 판단 여부는 주로 수위정보를 이용하며 수위 예측은 대부분 수치모형을 이용한다. 본 연구에서는 빅데이터 기반의 RNN(Recurrent Neural Networks)기법 알고리즘을 활용하여 수위를 예측하였다. 연구대상지는 조위의 영향을 많이 받는 한강 전역을 대상으로 하였다. 2008년~2018년(10개년)의 실제 침수 피해 실적을 조사한 결과 잠수교, 한강대교, 청담대교 등에서 침수 피해 발생률이 높게 나타났고 SNS(Social Network Services)와 같은 비정형화 자료에서는 청담대교가 가장 많이 태그(Tag)되어 청담대교를 연구범위로 설정하였다. 본 연구에서는 Python에서 제공하는 Tensor flow Library를 이용하여 수위예측 알고리즘을 적용하였다. 데이터는 정형화 데이터와 비정형 데이터를 사용하였으며 정형화 데이터는 한강홍수 통제소나 기상청에서 제공하는 최근 10년간의 (2008~2018) 수위 및 강우량 자료를 수집하였다. 비정형화 데이터는 SNS를 이용하여 민간 정보를 수집하여 정형화된 자료와 함께 전체자료를 구축하였다. 민감도 분석을 통하여 모델의 은닉층(5), 학습률(0.02) 및 반복횟수(100)의 최적값을 설정하였고, 24시간 동안의 데이터를 이용하여 3시간 후의 수위를 예측하였다. 2008년~ 2017년 까지의 데이터는 학습 데이터로 사용하였으며 2018년의 수위를 예측 및 평가하였다. 2018년의 관측수위 자료와 비교한 결과 90% 이상의 데이터가 10% 이내의 오차를 나타내었으며, 첨두수위도 비교적 정확하게 예측되는 것을 확인하였다. 향후 수위와 강우량뿐만 아니라 다양한 인자들도 고려한다면 보다 신속하고 정확한 예측 정보를 얻을 수 있을 것으로 기대된다.

  • PDF

Speech Feature Extraction based on Spikegram for Phoneme Recognition (음소 인식을 위한 스파이크그램 기반의 음성 특성 추출 기술)

  • Han, Seokhyeon;Kim, Jaewon;An, Soonho;Shin, Seonghyeon;Park, Hochong
    • Journal of Broadcast Engineering
    • /
    • 제24권5호
    • /
    • pp.735-742
    • /
    • 2019
  • In this paper, we propose a method of extracting speech features for phoneme recognition based on spikegram. The Fourier-transform-based features are widely used in phoneme recognition, but they are not extracted in a biologically plausible way and cannot have high temporal resolution due to the frame-based operation. For better phoneme recognition, therefore, it is desirable to have a new method of extracting speech features, which analyzes speech signal in high temporal resolution following the model of human auditory system. In this paper, we analyze speech signal based on a spikegram that models feature extraction and transmission in auditory system, and then propose a method of feature extraction from the spikegram for phoneme recognition. We evaluate the performance of proposed features by using a DNN-based phoneme recognizer and confirm that the proposed features provide better performance than the Fourier-transform-based features for short-length phonemes. From this result, we can verify the feasibility of new speech features extracted based on auditory model for phoneme recognition.

A New Study on Vibration Data Acquisition and Intelligent Fault Diagnostic System for Aero-engine

  • Ding, Yongshan;Jiang, Dongxiang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.16-21
    • /
    • 2008
  • Aero-engine, as one kind of rotating machinery with complex structure and high rotating speed, has complicated vibration faults. Therefore, condition monitoring and fault diagnosis system is very important for airplane security. In this paper, a vibration data acquisition and intelligent fault diagnosis system is introduced. First, the vibration data acquisition part is described in detail. This part consists of hardware acquisition modules and software analysis modules which can realize real-time data acquisition and analysis, off-line data analysis, trend analysis, fault simulation and graphical result display. The acquisition vibration data are prepared for the following intelligent fault diagnosis. Secondly, two advanced artificial intelligent(AI) methods, mapping-based and rule-based, are discussed. One is artificial neural network(ANN) which is an ideal tool for aero-engine fault diagnosis and has strong ability to learn complex nonlinear functions. The other is data mining, another AI method, has advantages of discovering knowledge from massive data and automatically extracting diagnostic rules. Thirdly, lots of historical data are used for training the ANN and extracting rules by data mining. Then, real-time data are input into the trained ANN for mapping-based fault diagnosis. At the same time, extracted rules are revised by expert experience and used for rule-based fault diagnosis. From the results of the experiments, the conclusion is obvious that both the two AI methods are effective on aero-engine vibration fault diagnosis, while each of them has its individual quality. The whole system can be developed in local vibration monitoring and real-time fault diagnosis for aero-engine.

  • PDF

The Risk Rating System for Noise-induced Hearing Loss in Korean Manufacturing Sites Based on the 2009 Survey on Work Environments

  • Kim, Young-Sun;Cho, Youn-Ho;Kwon, Oh-Jun;Choi, Seong-Weon;Rhee, Kyung-Yong
    • Safety and Health at Work
    • /
    • 제2권4호
    • /
    • pp.336-347
    • /
    • 2011
  • Objectives: In Korea, an average of 258 workers claim compensation for their noise-induced hearing loss (NIHL) on an annual basis. Indeed, hearing disorder ranks first in the number of diagnoses made by occupational medical check-ups. Against this backdrop, this study analyzed the impact of 19 types of noise-generating machines and equipment on the sound pressure levels in workplaces and NIHL occurrence based on a 2009 national survey on work environments. Methods: Through this analysis, a series of statistical models were built to determine posterior probabilities for each worksite with an aim to present risk ratings for noise levels at work. Results: It was found that air compressors and grinding machines came in first and second, respectively in the number of installed noise-generating machines and equipment. However, there was no direct relationship between workplace noise and NIHL among workers since noise-control equipment and protective gear had been in place. By building a logistic regression model and neural network, statistical models were set to identify the influence of the noise-generating machines and equipment on workplace noise levels and NIHL occurrence. Conclusion: This study offered NIHL prevention measures which are fit for the worksites in each risk grade.