• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.035 seconds

A Study on the Space Usage by the New Hanok Plan Composition - Focused on the New Hanok in Jeollanam-do Province - (신한옥의 평면구성에 따른 공간활용상태에 관한 연구 - 전라남도 신한옥을 중심으로 -)

  • Park, Jin-A;Kim, Soo-Am
    • Journal of the Korean housing association
    • /
    • v.23 no.4
    • /
    • pp.59-67
    • /
    • 2012
  • Developing the modern design of Hanok and providing support for the commercialization model development in recent years propelled by the New Hanok Support Strategies of the central government in conjunction with the New Hanok revitalization related projects reflecting local goverments. New Hanok revitalization, the rekindling and revaluing of human behaviors and interests in local goverments following the social and cultural changes of the past decades, has emeraged as an increasingly traditional area of concerning in New Hanok planning. In this paper we attempt to this discussion by describing recent projects in New Hanok revitalization in Jeollanam-do Province. Therefore, this study aims to examine the classification of compound knowledges based multidimensional relationship by using Self-Organizing Maps (SOM). SOM is an unsupervised learning neural network model for the analysis of high-dimensional input data. By using SOM, we were able to create a cluster map reflecting the characteristics of the New Hanok. In this case the pattern of the preference data was easily understood by visual analysis. Liking for compound knowledge deduced from this data was classified into 8 categories according to the compound knowledge properties of New Hanok. As a result, a systematic approach for analysis the characteristics of individual family and living environment of New Hanoks and 10 space usage patterns the changes in some aspects of New Hanok.

A Study on the Emotional Evaluation Model of Color Pattern Based on Adaptive Fuzzy System (적응 퍼지 시스템을 이용한 칼라패턴 감성 평가 모델에 관한 연구)

  • 엄경배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.526-537
    • /
    • 1999
  • In the paper. we propose an evaluation model based the adaptive fuzzy systems, which can transform the physical features of a color pattern to the emotional features. The model is motivated by the Soen's psychological experiments, in which he found the physical features such as average hue, saturation, intensity and the dynamic components of the color patterns affects to the emotional features represented by a pair of adjective words having the opposite meanings. Our proposed model consists of two adaptive fuzzy rule-bases and the y-model, a l i r ~ r ys et operator, to fuze the evaluation values produced by them. The model shows con~parablep erformances to the neural network for the approximation of the nonlinear transforms, and it has the advantage to obtain the linbwistic interpretation from the trained results. We believe the evaluated results of a color pattern can be used to the emotion-based color image retrievals.

  • PDF

Optimization of a Single-Channel Pump Impeller for Wastewater Treatment

  • Kim, Joon-Hyung;Cho, Bo-Min;Kim, Youn-Sung;Choi, Young-Seok;Kim, Kwang-Yong;Kim, Jin-Hyuk;Cho, Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.370-381
    • /
    • 2016
  • As a single-channel pump is used for wastewater treatment, this particular pump type can prevent performance reduction or damage caused by foreign substances. However, the design methods for single-channel pumps are different and more difficult than those for general pumps. In this study, a design optimization method to improve the hydrodynamic performance of a single-channel pump impeller is implemented. Numerical analysis was carried out by solving three-dimensional steady-state incompressible Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. As a state-of-the-art impeller design method, two design variables related to controlling the internal cross-sectional flow area of a single-channel pump impeller were selected for optimization. Efficiency was used as the objective function and was numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. An optimization process based on a radial basis neural network model was conducted systematically, and the performance of the optimum model was finally evaluated through an experimental test. Consequently, the optimum model showed improved performance compared with the base model, and the unstable flow components previously observed in the base model were suppressed remarkably well.

Pattern Classification Model Design and Performance Comparison for Data Mining of Time Series Data (시계열 자료의 데이터마이닝을 위한 패턴분류 모델설계 및 성능비교)

  • Lee, Soo-Yong;Lee, Kyoung-Joung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.730-736
    • /
    • 2011
  • In this paper, we designed the models for pattern classification which can reflect the latest trend in time series. It has been shown that fusion models based on statistical and AI methods are superior to traditional ones for the pattern classification model supporting decision making. Especially, the hit rates of pattern classification models combined with fuzzy theory are relatively increased. The statistical SVM models combined with fuzzy membership function, or the models combining neural network and FCM has shown good performance. BPN, PNN, FNN, FCM, SVM, FSVM, Decision Tree, Time Series Analysis, and Regression Analysis were used for pattern classification models in the experiments of this paper. The economical indices DB with time series properties of the financial market(Korea, KOSPI200 DB) and the electrocardiogram DB of arrhythmia patients in hospital emergencies(USA, MIT-BIH DB) were used for data base.

A Vehicle License Plate Recognition Using the Feature Vectors based on Mesh and Thinning (메쉬 및 세선화 기반 특징 벡터를 이용한 차량 번호판 인식)

  • Park, Seung-Hyun;Cho, Seong-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.705-711
    • /
    • 2011
  • This paper proposes an effective algorithm of license plate recognition for industrial applications. By applying Canny edge detection on a vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are compared with the pre-learned weighting values by backpropagation neural network to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.

Generating Firm's Performance Indicators by Applying PCA (PCA를 활용한 기업실적 예측변수 생성)

  • Lee, Joonhyuck;Kim, Gabjo;Park, Sangsung;Jang, Dongsik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.191-196
    • /
    • 2015
  • There have been many studies on statistical forecasting on firm's performance and stock price by applying various financial indicators such as debt ratio and sales growth rate. Selecting predictors for constructing a prediction model among the various financial indicators is very important for precise prediction. Most of the previous studies applied variable selection algorithms for selecting predictors. However, the variable selection algorithm is considered to be at risk of eliminating certain amount of information from the indicators that were excluded from model construction. Therefore, we propose a firm's performance prediction model which principal component analysis is applied instead of the variable selection algorithm, in order to reduce dimensionality of input variables of the prediction model. In this study, we constructed the proposed prediction model by using financial data of American IT companies to empirically analyze prediction performance of the model.

A Car License Plate Recognition Using Colors Information, Morphological Characteristic and Neural Network (컬러 정보 및 형태학적 특징과 신경망을 이용한 차량 번호판 인식)

  • Cho, Jae-Hyun;Yang, Hwang-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.304-308
    • /
    • 2010
  • In this paper, we propose a new method of recognizing the vehicle license plate using color space, morphological characteristics and ART2 algorithm. Morphological characteristics of old and/or new style vehicle license plate among the candidate regions are applied to remove noise areas using 8-directional contour tracking algorithm, then follow by the extraction of vehicle plate. From the extracted license plate area, plate morphological characteristics of each region are removed. After that, labeling algorithm to extract the individual characters are then combined. The classified individual character and numeric codes are applied to the ART2 algorithm for the learning and recognition. In order to evaluate the performance of our proposed extraction and recognition of vehicle license method, we have run experiments on 100 green plates and white plates. Experimental results shown that the proposed license plate extraction and recognition method was effective.

Variation for Mental Health of Children of Marginalized Classes through Exercise Therapy using Deep Learning (딥러닝을 이용한 소외계층 아동의 스포츠 재활치료를 통한 정신 건강에 대한 변화)

  • Kim, Myung-Mi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.725-732
    • /
    • 2020
  • This paper uses variables following as : to follow me well(0-9), it takes a lot of time to make a decision (0-9), lethargy(0-9) during physical activity in the exercise learning program of the children in the marginalized class. This paper classifies 'gender', 'physical education classroom', and 'upper, middle and lower' of age, and observe changes in ego-resiliency and self-control through sports rehabilitation therapy to find out changes in mental health. To achieve this, the data acquired was merged and the characteristics of large and small numbers were removed using the Label encoder and One-hot encoding. Then, to evaluate the performance by applying each algorithm of MLP, SVM, Dicesion tree, RNN, and LSTM, the train and test data were divided by 75% and 25%, and then the algorithm was learned with train data and the accuracy of the algorithm was measured with the Test data. As a result of the measurement, LSTM was the most effective in sex, MLP and LSTM in physical education classroom, and SVM was the most effective in age.

Major gene identification for FASN gene in Korean cattles by data mining (데이터마이닝을 이용한 한우의 우수 지방산합성효소 유전자 조합 선별)

  • Kim, Byung-Doo;Kim, Hyun-Ji;Lee, Seong-Won;Lee, Jea-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1385-1395
    • /
    • 2014
  • Economic traits of livestock are affected by environmental factors and genetic factors. In addition, it is not affected by one gene, but is affected by interaction of genes. We used a linear regression model in order to adjust environmental factors. And, in order to identify gene-gene interaction effect, we applied data mining techniques such as neural network, logistic regression, CART and C5.0 using five-SNPs (single nucleotide polymorphism) of FASN (fatty acid synthase). We divided total data into training (60%) and testing (40%) data, and applied the model which was designed by training data to testing data. By the comparison of prediction accuracy, C5.0 was identified as the best model. It were selected superior genotype using the decision tree.

Optimal Welding Condition for the Inclined and Skewed Fillet Joints ill the Curved Block of a Ship (I) (선박 골블록의 경사 필렛 이음부의 적정 용접조건 (I))

  • PARK JU-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.79-83
    • /
    • 2004
  • The curved blocks which compose the bow and stem of a ship contain many skewed joints that are inclined horizontally and vertically. Most of these joints have a large fitness error and are continuously changing their form and are not easily accessible. The welding position and parameter values should be appropriately set in correspondence to the shape and the inclination of the joints. The welding parameters such as current, voltage, travel speed, and melting rate, are related to each other and their values must be in a specific limited range for the sound welding. These correlations and the ranges are dependent up on the kind and size of wire, shielding gas, joint shape and fitness. To determine these relationships, extensive welding experiments were performed. The experimental data were processed using several information processing technologies. The regression method was used to determine the relationship between current voltage, and deposition rate. When a joint is inclined, the weld bead should be confined to a the limited size, inorder to avoid undercut as well as overlap due to flowing down of molten metal by gravity. The dependency of the limited weld size which is defined as the critical deposited area on various factors such as the horizontally and vertically inclined angle of the joint, skewed angle of the joint, up or down welding direction and weaving was investigated through a number of welding experiments. On the basis of this result, an ANN system was developed to estimate the critical deposited area. The ANN system consists of a 4 layer structure and uses an error back propagation learning algorithm. The estimated values of the ANN were validated using experimental values.