• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.042 seconds

A Study of the Feature Classification and the Predictive Model of Main Feed-Water Flow for Turbine Cycle (주급수 유량의 형상 분류 및 추정 모델에 대한 연구)

  • Yang, Hac Jin;Kim, Seong Kun;Choi, Kwang Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.263-271
    • /
    • 2014
  • Corrective thermal performance analysis is required for thermal power plants to determine performance status of turbine cycle. We developed classification method for main feed water flow to make precise correction for performance analysis based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). The classification is based on feature identification of status of main water flow. Also we developed predictive algorithms for corrected main feed-water through Support Vector Machine (SVM) Model for each classified feature area. The results was compared to estimations using Neural Network(NN) and Kernel Regression(KR). The feature classification and predictive model of main feed-water flow provides more practical methods for corrective thermal performance analysis of turbine cycle.

A Study to Predict the Traffic Accident Severity Level Applying Neural Network at the Signalized Intersections (인공신경망을 적용한 신호교차로 교통사고심각도 예측에 관한 연구)

  • Choi, Jae-Won;Kim, Seong-Ho;Cho, Jun-Han;Kim, Won-Chul
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.127-135
    • /
    • 2004
  • 교차로 안전성 진단과 관련된 기존의 연구는 교차로 상에서 발생한 사고 자료에 기초하여 교차로 기하구조 요소, 교통량 및 신호운영방법 등과 관련된 요인을 변수로 사용하여 교통사고건수 예측모형 개발에 관한 연구가 대부분이다. 그러나, 분석하고자 하는 대상 교차로의 사고건수 예측모형을 개발하기 위해 필요한 교통사고 자료의 경우 단 기일에 걸쳐 획득되지 않으며 몇 년간의 사고 자료를 요구할 수도 있다. 이러한 자료를 이용하더라도 사고 발생 기간동안 교차로 사고에 영향을 미치는 요인(교차로 운영방법, 기하구조 등)이 변화될 수도 있다는 문제점을 지닌다. 이와 같은 이유로 교차로 안전성을 진단하는데 있어 기존 교통사고 자료는 언제나 절대적인 자료가 될 수 없다. 이에 대한 보완책으로, 3일에서 5일정도의 조사 자료만으로도 안전성 진단이 가능한 상충자료를 이용하여 교차로 안전성 진단을 할 수 있다. 본 연구는 기존사고 자료를 이용하여 사고 발생에 기인하는 여러 변수들을 교통사고심각도와의 상관관계를 분석하고, 상관관계가 높은 변수를 이용하여 신경망 사고심각도 예측모형을 개발하였으며, 모형 검증을 위해 다중회귀사고심각도 예측모형을 개발하여 비교 평가한 결과 신경망 사고심각도 예측모형의 예측력이 우수한 것으로 나타났다. 현장에서 조사된 상충자료를 신경망 사고심각도 예측모형에 적용하여 상충이 사고로 연결 될 경우 사고심각도를 예측하였으며, 예측된 사고심각도에 가중치를 부여하여 대상 교차로 위험우선순위를 결정한 결과 사고비용에 기초한 위험우선순위 결정법과 같은 순위의 결과를 도출하였다.

Gyro-Mouse for the Disabled: 'Click' and 'Position' Control of the Mouse Cursor

  • Eom, Gwang-Moon;Kim, Kyeong-Seop;Kim, Chul-Seung;Lee, James;Chung, Soon-Cheol;Lee, Bong-Soo;Higa, Hiroki;Furuse, Norio;Futami, Ryoko;Watanabe, Takashi
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.147-154
    • /
    • 2007
  • This paper describes a 'gyro-mouse', which provides a new human-computer interface (HCI) for persons who are disabled in their upper extremities, for handling the mouse-click and mouse-move function. We adopted the artificial neural network to recognize a quick-nodding pattern of the disabled person as the gyro-mouse click. The performance of our gyro-mouse was evaluated by three indices that include 'click recognition rate', 'error in cursor position control', and 'click rate per minute' on a target box appearing at random positions. Although it turned out that the average error in cursor positioning control was 1.4-1.5 times larger than that of optical mouse control, and the average click rate per minute was 40% of the optical mouse, the overall click recognition rate was 93%. Moreover, the click rate per minute increased from 35.2% to 44% with repetitive trials. Hence, our suggested gyro-mouse system can be used to provide a new user interface tool especially for those persons who do not have full use of their upper extremities.

Lateral Control of An Autonomous Vehicle Using Reinforcement Learning (강화 학습을 이용한 자율주행 차량의 횡 방향 제어)

  • 이정훈;오세영;최두현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.76-88
    • /
    • 1998
  • While most of the research on reinforcement learning assumed a discrete control space, many of the real world control problems need to have continuous output. This can be achieved by using continuous mapping functions for the value and action functions of the reinforcement learning architecture. Two questions arise here however. One is what sort of function representation to use and the other is how to determine the amount of noise for search in action space. The ubiquitous neural network is used here to learn the value and policy functions. Next, the reinforcement predictor that is intended to predict the next reinforcement is introduced that also determines the amount of noise to add to the controller output. The proposed reinforcement learning architecture is found to have a sound on-line learning control performance especially at high-speed road following of high curvature road. Both computer simulation and actual experiments on a test vehicle have been performed and their efficiency and effectiveness has been verified.

  • PDF

An Adaptive Thresholding of the Nonuniformly Contrasted Images by Using Local Contrast Enhancement and Bilinear Interpolation (국소 영역별 대비 개선과 쌍선형 보간에 의한 불균등 대비 영상의 효율적 적응 이진화)

  • Jeong, Dong-Hyun;Cho, Sang-Hyun;Choi, Heung-Moon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.51-57
    • /
    • 1999
  • In this paper, an adaptive thresholding of the nonuniformly contrasted images is proposed through using the contrast pre-enhancement of the local regions and the bilinear interpolation between the local threshold values. The nonuniformly contrasted image is decomposed into 9${\times}$9 sized local regions, and the contrast is enhanced by intensifying the gray level difference of each low contrasted or blurred region. Optimal threshold values are obtained by iterative method from the gray level distribution of each contrast-enhanced local region. Discontinuities are reduced at the region of interest or at the characters by using bilinear interpolation between the neighboring threshold surfaces. Character recognition experiments are conducted using backpropagation neural network on the characters extracted from the nonuniformly contrasted document, PCB, and wafer images binarized through using the proposed thresholding and the conventional thresholding methods, and the results prove the relative effectiveness of the proposed scheme.

  • PDF

Floating Memristor Emulator Circuit (비접지형 멤리스터 에뮬레이터 회로)

  • Kim, Yongjin;Yang, Changju;Kim, Hyongsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.49-58
    • /
    • 2015
  • A floating type of memristor emulator which acts like the behavior of $TiO_2$ memristor has been developed. Most of existing memristor emulators are grounded type which is built disregarding the connectivity with other memristor or other devices. The developed memristor emulator is a floating type whose output does not need to be grounded. Therefore, the emulator is able to be connected with other devices and be utilized for the interoperability test with various other circuits. To prove the floating function of the proposed memristor emulator, a Wheatstone bridge is built by connecting 4 memristor emulators in series and parallel. Also this bridge circuit suggest that it is possible to weight calculation of the neural network synapse.

Anomalous Trajectory Detection in Surveillance Systems Using Pedestrian and Surrounding Information

  • Doan, Trung Nghia;Kim, Sunwoong;Vo, Le Cuong;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.256-266
    • /
    • 2016
  • Concurrently detected and annotated abnormal events can have a significant impact on surveillance systems. By considering the specific domain of pedestrian trajectories, this paper presents two main contributions. First, as introduced in much of the work on trajectory-based anomaly detection in the literature, only information about pedestrian paths, such as direction and speed, is considered. Differing from previous work, this paper proposes a framework that deals with additional types of trajectory-based anomalies. These abnormal events take places when a person enters prohibited areas. Those restricted regions are constructed by an online learning algorithm that uses surrounding information, including detected pedestrians and background scenes. Second, a simple data-boosting technique is introduced to overcome a lack of training data; such a problem particularly challenges all previous work, owing to the significantly low frequency of abnormal events. This technique only requires normal trajectories and fundamental information about scenes to increase the amount of training data for both normal and abnormal trajectories. With the increased amount of training data, the conventional abnormal trajectory classifier is able to achieve better prediction accuracy without falling into the over-fitting problem caused by complex learning models. Finally, the proposed framework (which annotates tracks that enter prohibited areas) and a conventional abnormal trajectory detector (using the data-boosting technique) are integrated to form a united detector. Such a detector deals with different types of anomalous trajectories in a hierarchical order. The experimental results show that all proposed detectors can effectively detect anomalous trajectories in the test phase.

Emotion Recognition Using Color and Pattern in Textile Images (컬러와 패턴을 이용한 텍스타일 영상에서의 감정인식 시스템)

  • Shin, Yun-Hee;Kim, Young-Rae;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.154-161
    • /
    • 2008
  • In this paper, a novel method is proposed using color and pattern information for recognizing some emotions included in a fertile. Here we use 10 Kobayashi emotion to represent emotions. - { romantic, clear, natural, casual, elegant chic, dynamic, classic, dandy, modem } The proposed system is composed of feature extraction and classification. To transform the subjective emotions as physical visual features, we extract representative colors and Patterns from textile. Here, the representative color prototypes are extracted by color quantization method, and patterns exacted by wavelet transform followed by statistical analysis. These exacted features are given as input to the neural network (NN)-based classifiers, which decides whether or not a textile had the corresponding emotion. When assessing the effectiveness of the proposed system with 389 textiles collected from various application domains such as interior, fashion, and artificial ones. The results showed that the proposed method has the precision of 100% and the recall of 99%, thereby it can be used in various textile industries.

Automatic Film Line Scratch Removal System using Spatial Information (공간 정보를 이용한 오래된 필름에서의 스크래치 제거 시스템)

  • Ko, Eun-Jeong;Kim, Kyung-Tai;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.162-169
    • /
    • 2008
  • Film restoration is to detect the location and extent of defected regions from a given movie film, and if present, to reconstruct the lost information of each regions. It has gained increasing attention by many researchers, to support multimedia service of high quality. Among artifacts, scratch is the most frequent degradation. In this paper, an automatic film line scratch removal system is developed that can detect and restore all kind of scratches. For this we use the spatial information of scratches: The scratch in old films has lower or higher brightness than neighboring pixels in its vicinity and usually appears as a vertically long thin line. Our systems consists of scratch detection and scratch restoration. The scratches of various types are detected by neural network based texture classifier and morphology-based shape filter and then the degraded regions are restored using bilinear interpolation. To assess the validity of the Proposed method, it has been tested with all kinds of scratches, and then experimental results show that the proposed approach is robust to various scratches and efficient to apply a real film removal system.

Target Recognition Method of DTV-Based Passive Radar Using Multi-Channel Combining Method (다중 채널 융합 기법을 이용한 DTV 기반 수동형 레이다의 표적 인식 방법)

  • Seol, Seung-Hwan;Choi, Young-Jae;Choi, In-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.794-801
    • /
    • 2017
  • In this paper, we proposed airborne target recognition using multi-channel combining method in DTV-based passive radar. By combining multi-channel signals, we obtained the HRRP with sufficient range resolution. HRRP was obtained by AR method or zero-padding. From the obtained HRRP, we extracted scattering centers by CLEAN algorithm using the gradient descent. We extracted feature vectors and performed target recognition after training neural network using the extracted feature vectors. To verify performance of proposed methods, we assumed frequency bands of three broadcasting transmitters operated in Korea(Mt. Gwan-ak, Mt. Yong-moon, Kyeon-wol-ak) and used full scale 3D CAD model of four targets. Also we compared the target recognition performance of the proposed method with that of using only single-channel of three broadcasting transmitters. As a result, proposed methods showed better performance than using only single-channel at three broadcasting transmitters.