• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.038 seconds

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.

Classification of Handwritten and Machine-printed Korean Address Image based on Connected Component Analysis (연결요소 분석에 기반한 인쇄체 한글 주소와 필기체 한글 주소의 구분)

  • 장승익;정선화;임길택;남윤석
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.10
    • /
    • pp.904-911
    • /
    • 2003
  • In this paper, we propose an effective method for the distinction between machine-printed and handwritten Korean address images. It is important to know whether an input image is handwritten or machine-printed, because methods for handwritten image are quite different from those of machine-printed image in such applications as address reading, form processing, FAX routing, and so on. Our method consists of three blocks: valid connected components grouping, feature extraction, and classification. Features related to width and position of groups of valid connected components are used for the classification based on a neural network. The experiment done with live Korean address images has demonstrated the superiority of the proposed method. The correct classification rate for 3,147 testing images was about 98.85%.

A Pattern Recognition Method of Fatigue Crack Growth on Metal using Acoustic Emission (음향방출을 이용한 금속의 피로 균열성장 패턴인식 기법)

  • Lee, Soo-Ill;Lee, Jong-Seok;Min, Hwang-Ki;Park, Cheol-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.125-137
    • /
    • 2009
  • Acoustic emission-based techniques are being used for the nondestructive inspection of mechanical systems used in service. For reliable fault monitoring related to the crack growth, it is important to identify the dynamical characteristics as well as transient crack-related signals. Widely used methods which are based on physical phenomena of the three damage stages for detecting the crack growth have a problem that crack-related acoustic emission activities overlap in time, therefore it is insufficient to estimate the exact crack growth time. The proposed pattern recognition method uses the dynamical characteristics of acoustic emission as inputs for minimizing false alarms and miss alarms and performs the temporal clustering to estimate the crack growth time accurately. Experimental results show that the proposed method is effective for practical use because of its robustness to changes of acoustic emission caused by changes of pressure levels.

Seasonal Variation in the Species Composition of Bag-net Catch from the Coastal Waters of Incheon, Korea (인천연안 낭장망 어획물 종조성의 계절변동)

  • Song, Mi-Young;Sohn, Myoung-Ho;Im, Yang-Jae;Kim, Jong-Bin;Kim, Hee-Yong;Yeon, In-Ja;Hwang, Hak-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.4
    • /
    • pp.272-281
    • /
    • 2008
  • Seasonal and annual variation in the species composition of bag-net catch in the coastal waters of Incheon, Korea were examined from April 2000 to November 2004. To analyze seasonal variation of the fisheries data, we implemented a self-organizing map(SOM), an unsupervised artificial neural network, with the catch amount of 97 species. Over 5 years, we caught 68 species of fish, 23 species of crustaceans and six species of cephalopods. The total number of fish species were gradually increased during the study period. The number of species was higher during the spring than the autumn. The SOM identified four groups of the sampling months based on seasonal changes in communities. In the spring, the dominant species were Leptochela gracilis and Pholis fangi; whereas, in the autumn, Engraulis japonicus and Portunus trituberculatus were dominant species in bag-net catch. Our results will be used to estimate seasonal and annual variation in fisheries resources of Korean coastal waters.

A study on the Pattern Recognition of the EMG signals using Neural Network and Probabilistic modal for the two dimensional Motions described by External Coordinate (신경회로망과 확률모델을 이용한 2차원운동의 외부좌표에 대한 EMG신호의 패턴인식에 관한 연구)

  • Jang, Young-Gun;Kwon, Jang-Woo;Hong, Seung-Hong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.65-70
    • /
    • 1991
  • A hybrid model which uses a probabilistic model and a MLP(multi layer perceptron) model for pattern recognition of EMG(electromyogram) signals is proposed in this paper. MLP model has problems which do not guarantee global minima of error due to learning method and have different approximation grade to bayesian probabilities due to different amounts and quality of training data, the number of hidden layers and hidden nodes, etc. Especially in the case of new test data which exclude design samples, the latter problem produces quite different results. The error probability of probabilistic model is closely related to the estimation error of the parameters used in the model and fidelity of assumtion. Generally, it is impossible to introduce the bayesian classifier to the probabilistic model of EMG signals because of unknown priori probabilities and is estimated by MLE(maximum likelihood estimate). In this paper we propose the method which get the MAP(maximum a posteriori probability) in the probabilistic model by estimating the priori probability distribution which minimize the error probability using the MLP. This method minimize the error probability of the probabilistic model as long as the realization of the MLP is optimal and approximate the minimum of error probability of each class of both models selectively. Alocating the reference coordinate of EMG signal to the outside of the body make it easy to suit to the applications which it is difficult to define and seperate using internal body coordinate. Simulation results show the benefit of the proposed model compared to use the MLP and the probabilistic model seperately.

  • PDF

Use of Minimal Spanning Trees on Self-Organizing Maps (자기조직도에서 최소생성나무의 활용)

  • Jang, Yoo-Jin;Huh, Myung-Hoe;Park, Mi-Ra
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.415-424
    • /
    • 2009
  • As one of the unsupervised learning neural network methods, self-organizing maps(SOM) are applied to various fields. It reduces the dimension of multidimensional data by representing observations on the low dimensional manifold. On the other hand, the minimal spanning tree(MST) of a graph that achieves the most economic subset of edges connecting all components by a single open loop. In this study, we apply the MST technique to SOM with subnodes. We propose SOM's with embedded MST and a distance measure for optimum choice of the size and shape of the map. We demonstrate the method with Fisher's Iris data and a real gene expression data. Simulated data sets are also analyzed to check the validity of the proposed method.

Emergency Situation Detection using Images from Surveillance Camera and Mobile Robot Tracking System (감시카메라 영상기반 응급상황 탐지 및 이동로봇 추적 시스템)

  • Han, Tae-Woo;Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.101-107
    • /
    • 2009
  • In this paper, we describe a method of detecting emergency situation using images from surveillance cameras and propose a mobile robot tracking system for detailed examination of that situation. We are able to track a few persons and recognize their actions by an analyzing image sequences acquired from a fixed camera on all sides of buildings. When emergency situation is detected, a mobile robot moves and closely examines the place where the emergency is occurred. In order to recognize actions of a few persons using a sequence of images from surveillance cameras images, we need to track and manage a list of the regions which are regarded as human appearances. Interest regions are segmented from the background using MOG(Mixture of Gaussian) model and continuously tracked using appearance model in a single image. Then we construct a MHI(Motion History Image) for a tracked person using silhouette information of region blobs and model actions. Emergency situation is finally detected by applying these information to neural network. And we also implement mobile robot tracking technology using the distance between the person and a mobile robot.

  • PDF

Optimizing Performance and Energy Efficiency in Cloud Data Centers Through SLA-Aware Consolidation of Virtualized Resources (클라우드 데이터 센터에서 가상화된 자원의 SLA-Aware 조정을 통한 성능 및 에너지 효율의 최적화)

  • Elijorde, Frank I.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2014
  • The cloud computing paradigm introduced pay-per-use models in which IT services can be created and scaled on-demand. However, service providers are still concerned about the constraints imposed by their physical infrastructures. In order to keep the required QoS and achieve the goal of upholding the SLA, virtualized resources must be efficiently consolidated to maximize system throughput while keeping energy consumption at a minimum. Using ANN, we propose a predictive SLA-aware approach for consolidating virtualized resources in a cloud environment. To maintain the QoS and to establish an optimal trade-off between performance and energy efficiency, the server's utilization threshold dynamically adapts to the physical machine's resource consumption. Furthermore, resource-intensive VMs are prevented from getting underprovisioned by assigning them to hosts that are both capable and reputable. To verify the performance of our proposed approach, we compare it with non-optimized conventional approaches as well as with other previously proposed techniques in a heterogeneous cloud environment setup.

Visual Sensor Design and Environment Modeling for Autonomous Mobile Welding Robots (자율 주행 용접 로봇을 위한 시각 센서 개발과 환경 모델링)

  • Kim, Min-Yeong;Jo, Hyeong-Seok;Kim, Jae-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.776-787
    • /
    • 2002
  • Automation of welding process in shipyards is ultimately necessary, since the welding site is spatially enclosed by floors and girders, and therefore welding operators are exposed to hostile working conditions. To solve this problem, a welding mobile robot that can navigate autonomously within the enclosure has been developed. To achieve the welding task in the closed space, the robotic welding system needs a sensor system for the working environment recognition and the weld seam tracking, and a specially designed environment recognition strategy. In this paper, a three-dimensional laser vision system is developed based on the optical triangulation technology in order to provide robots with 3D work environmental map. Using this sensor system, a spatial filter based on neural network technology is designed for extracting the center of laser stripe, and evaluated in various situations. An environment modeling algorithm structure is proposed and tested, which is composed of the laser scanning module for 3D voxel modeling and the plane reconstruction module for mobile robot localization. Finally, an environmental recognition strategy for welding mobile robot is developed in order to recognize the work environments efficiently. The design of the sensor system, the algorithm for sensing the partially structured environment with plane segments, and the recognition strategy and tactics for sensing the work environment are described and discussed with a series of experiments in detail.

Automated Scoring of Scientific Argumentation Using Expert Morpheme Classification Approaches (전문가의 형태소 분류를 활용한 과학 논증 자동 채점)

  • Lee, Manhyoung;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.321-336
    • /
    • 2020
  • We explore automated scoring models of scientific argumentation. We consider how a new analytical approach using a machine learning technique may enhance the understanding of spoken argumentation in the classroom. We sampled 2,605 utterances that occurred during a high school student's science class on molecular structure and classified the utterances into five argumentative elements. Next, we performed Text Preprocessing for the classified utterances. As machine learning techniques, we applied support vector machines, decision tree, random forest, and artificial neural network. For enhancing the identification of rebuttal elements, we used a heuristic feature-engineering method that applies experts' classification of morphemes of scientific argumentation.